1,254 research outputs found
Rapid detection of human blood in triatomines (kissing bugs) utilizing a lateral flow immunochromatographic assay - A pilot study
BACKGROUND DNA- and proteomics-based techniques are currently used to identify a triatomine human blood meal. These methods are time consuming, require access to laboratories with sophisticated equipment, and trained personnel. OBJECTIVES We tested a rapid and specific immunochromatographic assay (that detects human blood in forensic samples) to determine if human blood was present in triatomines and their fecal excreta. METHODS We fed Triatoma rubida human blood (positive control) or mouse blood (negative control) and performed the assay on the abdominal contents and fecal excreta. Triatomine field specimens collected in and around human habitations and excreta were also tested. FINDINGS The assay was positive in triatomines fed human blood (N = 5/5) and fecal excreta from bugs known to have ingested human blood (N = 5/5). Bugs feeding on mice (N = 15/15) and their fecal excreta (N = 8/8) were negative for human blood. Human blood was detected in 47% (N = 23/49) triatomines, representing six different species, collected in the field. MAIN CONCLUSIONS The pilot study shows that this rapid and specific test may have applications in triatomine research. Further study is needed to determine the sensitivity of this assay compared to other well-established techniques, such as DNA- and proteomics-based methodologies and the assay's application in the field.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Digital Twining of Geophysical Extremes
The geophysical research community has developed a relatively large amount of numerical codes and scientific methodologies which are able to numerically simulate through physics the extreme behavior of the Earth systems (for example: volcanoes, tsunamis earthquakes, etc). Furthermore,
nowadays, large volumes of data have been acquired and, even near real-time data streams are accessible. Therefore, Earth scientist currently have on their hands the possibility of monitoring these events through sophisticated approaches using the current leading edge computational capabilities provided by pre-exascale computing infrastructures. The implementation and deployments of 12 Digital Twin Components (DTCs), addressing different aspects of geophysical extreme events is being carried out by DT-GEO, a project funded under the Horizon Europe programme (2022-2025). Each DTC is intended as self-contained entity embedding flagship simulation codes, Artificial Intelligence layers, large volumes of (real-time) data streams from and into data-lakes, data assimilation methodologies, and overarching workflows which will are executed independently or coupled DTCs in a centralized HPC and/or virtual cloud computing research infrastructure
A digital twin for geophysical extremes: interim results from the DT-GEO project
The DT-GEO project (2022-2025), funded under the Horizon Europe topic call INFRA-2021-TECH-01-01, is implementing an interdisciplinary digital twin for modelling and simulating geophysical extremes at the service of research infrastructures and related communities. The digital twin consists of interrelated Digital Twin Components (DTCs) dealing with geohazards from earthquakes to volcanoes to tsunamis and that harness world-class computational (FENIX, EuroHPC) and data (EPOS) Research Infrastructures, operational monitoring networks, and leading-edge research and academic partnerships in various fields of geophysics. The project is merging and assembling latest developments from other European projects and EuroHPC Centers of Excellence to deploy 12 DTCs, intended as self-contained containerised entities embedding flagship simulation codes, artificial intelligence layers, large volumes of (real-time) data streams from and into data-lakes, data assimilation methodologies, and overarching workflows for deployment and execution of single or coupled DTCs in centralised HPC and virtual cloud computing Research Infrastructures (RIs). Each DTC addresses specific scientific questions and circumvents technical challenges related to hazard assessment, early warning, forecasts, urgent computing, or geo-resource prospection. This presentation summarises the results form the first year of the project including the digital twin architecture and the (meta)data structures enabling (semi-)automatic discovery, contextualisation, and orchestration of software (services) and data assets. This is a preliminary step before verifying the DTCs at 13 Site Demonstrators and starts a long-term community effort towards a twin on Geophysical Extremes integrated in the Destination Earth (DestinE) initiative
Digital Twinning of Geophysical Extreme Phenomena (DT-GEO)
Destination Earth initiative pursues the implementation of a digital model of the Earth. With the aim to help understand and simulate the evolution and behavior of the Earth system components, to aid in better forecasting the impacts on human system processes, ecosystem processes and their interaction. The current state of the art technologies in numerical computations (HPC), data infrastructures (involving data storage, data access, data analysis), enable the possibility of developing numerical clones mimicking Earth¿s geophysical extreme phenomena.A Digital Twin for GEOphysical extremes (DT-GEO),is a new EU project funded under the Horizon Europe programme (2022-2025), with the objective of developing a prototype for a digital twin on geophysical extremes including earthquakes, volcanoes, tsunamis, and anthropogenic-induced extreme events. It will enable analyses, forecasts, and responses to ¿what if¿ scenarios for natural hazards from their genesis phases and across their temporal and spatial scales. The project consortium brings together world-class computational and data Research Infrastructures (RIs), operational monitoring networks, and leading-edge research and academia partnerships in various fields of geophysics. It mergesthe latest outcomes from other European projects and, Centers of Excellence. DT-GEO will deploy and test 12 Digital Twin Components (DTCs). These will be self-contained entities embedding flagship simulation codes, Artificial Intelligence layers, large volumes of (real-time) data streams from and into data-lakes, data assimilation methodologies, and overarching workflows for deployment and execution of single or coupled DTCs in centralized HPC and virtual cloud computing Ris. (DT-GEO: A Digital Twin for GEOphysical extremes, project ID 101058129)
How to cite: Carbonell, R., Folch, A., Costa, A., Orlecka-Sikora, B., Lanucara, P., Løvholt, F., Macias, J., Brune, S., Gabriel, A.-A., Barsotti, S., Behrens, J., Gomes, J., Schmittbuhl, J., Freda, C., Kocot, J., Giardini, D., Afanasiev, M., Galves, H., and Badia, R.: Digital Twinning of Geophysical Extreme Phenomena (DT-GEO), EGU General Assembly 2023, Vienna, Austria, 24¿28 Apr 2023, EGU23-5674, https://doi.org/10.5194/egusphere-egu23-5674, 2023
Towards the new thematic Core service Tsunami within the EPOS research infrastructure
Tsunamis constitute a significant hazard for European coastal populations, and the impact of tsunami events worldwide can extend well beyond the coastal regions directly affected. Understanding the complex mechanisms of tsunami generation, propagation, and inundation, as well as managing the tsunami risk, requires multidisciplinary research and infrastructures that cross national boundaries. Recent decades have seen both great advances in tsunami science and consolidation of the European tsunami research community. A recurring theme has been the need for a sustainable platform for coordinated tsunami community activities and a hub for tsunami services. Following about three years of preparation, in July 2021, the European tsunami community attained the status of Candidate Thematic Core Service (cTCS) within the European Plate Observing System (EPOS) Research Infrastructure. Within a transition period of three years, the Tsunami candidate TCS is anticipated to develop into a fully operational EPOS TCS. We here outline the path taken to reach this point, and the envisaged form of the future EPOS TCS Tsunami. Our cTCS is planned to be organised within four thematic pillars: (1) Support to Tsunami Service Providers, (2) Tsunami Data, (3) Numerical Models, and (4) Hazard and Risk Products. We outline how identified needs in tsunami science and tsunami risk mitigation will be addressed within this structure and how participation within EPOS will become an integration point for community developmen
Tsunami risk communication and management: Contemporary gaps and challenges
Very large tsunamis are associated with low probabilities of occurrence. In many parts of the world, these events have usually occurred in a distant time in the past. As a result, there is low risk perception and a lack of collective memories, making tsunami risk communication both challenging and complex. Furthermore, immense challenges lie ahead as population and risk exposure continue to increase in coastal areas.
Through the last decades, tsunamis have caught coastal populations off-guard, providing evidence of lack of preparedness. Recent tsunamis, such as the Indian Ocean Tsunami in 2004, 2011 Tohoku and 2018 Palu, have shaped the way tsunami risk is perceived and acted upon.
Based on lessons learned from a selection of past tsunami events, this paper aims to review the existing body of knowledge and the current challenges in tsunami risk communication, and to identify the gaps in the tsunami risk management methodologies. The important lessons provided by the past events call for strengthening community resilience and improvement in risk-informed actions and policy measures.
This paper shows that research efforts related to tsunami risk communication remain fragmented. The analysis of tsunami risk together with a thorough understanding of risk communication gaps and challenges is indispensable towards developing and deploying comprehensive disaster risk reduction measures. Moving from a broad and interdisciplinary perspective, the paper suggests that probabilistic hazard and risk assessments could potentially contribute towards better science communication and improved planning and implementation of risk mitigation measures
The Making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18)
The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models’ weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∼20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH >5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH >3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH >1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning.publishedVersio
Connectivity precedes function in the development of the visual word form area
What determines the cortical location at which a given functionally specific region will arise in development? We tested the hypothesis that functionally specific regions develop in their characteristic locations because of pre-existing differences in the extrinsic connectivity of that region to the rest of the brain. We exploited the visual word form area (VWFA) as a test case, scanning children with diffusion and functional imaging at age 5, before they learned to read, and at age 8, after they learned to read. We found the VWFA developed functionally in this interval and that its location in a particular child at age 8 could be predicted from that child's connectivity fingerprints (but not functional responses) at age 5. These results suggest that early connectivity instructs the functional development of the VWFA, possibly reflecting a general mechanism of cortical development.National Institutes of Health (U.S.) (Grant F32HD079169)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant F32HD079169)National Institutes of Health (U.S.) (Grant R01HD067312)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant R01HD067312
Towards the new Thematic Core Service Tsunami within the EPOS Research Infrastructure
Tsunamis constitute a significant hazard for European coastal populations, and the impact of tsunami events worldwide can extend well beyond the coastal regions directly affected. Understanding the complex mechanisms of tsunami generation, propagation, and inundation, as well as managing the tsunami risk, requires multidisciplinary research and infrastructures that cross national boundaries. Recent decades have seen both great advances in tsunami science and consolidation of the European tsunami research community. A recurring theme has been the need for a sustainable platform for coordinated tsunami community activities and a hub for tsunami services. Following about three years of preparation, in July 2021, the European tsunami community attained the status of Candidate Thematic Core Service (cTCS) within the European Plate Observing System (EPOS) Research Infrastructure. Within a transition period of three years, the Tsunami candidate TCS is anticipated to develop into a fully operational EPOS TCS. We here outline the path taken to reach this point, and the envisaged form of the future EPOS TCS Tsunami. Our cTCS is planned to be organised within four thematic pillars: (1) Support to Tsunami Service Providers, (2) Tsunami Data, (3) Numerical Models, and (4) Hazard and Risk Products. We outline how identified needs in tsunami science and tsunami risk mitigation will be addressed within this structure and how participation within EPOS will become an integration point for community development
- …