110 research outputs found

    Global Precipitation Nowcasting of Integrated Multi-satellitE Retrievals for GPM: A U-Net Convolutional LSTM Architecture

    Full text link
    This paper presents a deep learning architecture for nowcasting of precipitation almost globally every 30 min with a 4-hour lead time. The architecture fuses a U-Net and a convolutional long short-term memory (LSTM) neural network and is trained using data from the Integrated MultisatellitE Retrievals for GPM (IMERG) and a few key precipitation drivers from the Global Forecast System (GFS). The impacts of different training loss functions, including the mean-squared error (regression) and the focal-loss (classification), on the quality of precipitation nowcasts are studied. The results indicate that the regression network performs well in capturing light precipitation (below 1.6 mm/hr), but the classification network can outperform the regression network for nowcasting of precipitation extremes (>8 mm/hr), in terms of the critical success index (CSI).. Using the Wasserstein distance, it is shown that the predicted precipitation by the classification network has a closer class probability distribution to the IMERG than the regression network. It is uncovered that the inclusion of the physical variables can improve precipitation nowcasting, especially at longer lead times in both networks. Taking IMERG as a relative reference, a multi-scale analysis in terms of fractions skill score (FSS), shows that the nowcasting machine remains skillful (FSS > 0.5) at the resolution of 10 km compared to 50 km for GFS. For precipitation rates greater than 4~mm/hr, only the classification network remains FSS-skillful on scales greater than 50 km within a 2-hour lead time

    REFAME: Rain Estimation Using Forward Adjusted-Advection of Microwave Estimates

    Get PDF
    Sensors flying on satellites provide the only practical means of estimating the precipitation that falls over the entire globe, particularly across the vast unpopulated expanses of Earth s oceans. The sensors that observe the Earth using microwave frequencies provide the best data, but currently these are mounted only on satellites flying in "low Earth orbit". Such satellites constantly move across the Earth s surface, providing snapshots of any given location every 12-36 hours. The entire constellation of low-orbit satellites numbers less than a dozen, and their orbits are not coordinated, so a location will frequently go two or more hours between snapshots. "Geosynchronous Earth orbit" (GEO) satellites continuously observe the same region of the globe, allowing them to provide very frequent pictures. For example, the "satellite movies" shown on television come from GEO satellites. However, the sensors available on GEO satellites cannot match the skill of the low-orbit microwave sensors in estimating precipitation. It is perhaps obvious that scientists should try to combine these very different kinds of data, taking advantage of the strengths of each, but this simple concept has proved to be a huge challenge. The scheme in this paper is "Lagrangian", meaning we follow the storm systems, rather than being tied to a fixed grid of boxes on the Earth s surface. Whenever a microwave snapshot occurs, we gladly use the resulting precipitation estimate. Then at all the times between the microwave snapshots we force the storm system to make a smooth transition from one snapshot s values to the next. We know that a lot more changes occur between the snapshots, but this smooth transition the best we can do with the microwave data alone. The key new contribution in this paper is that we also look at the relative variations in the GEO estimates during these in-between times and force the estimated changes in the precipitation to have similar variations. Preliminary testing shows that this approach has enough promise that it should be developed and studied

    Utilizing Humidity and Temperature Data to Advance Monitoring and Prediction of Meteorological Drought

    Get PDF
    The fraction of land area over the Continental United States experiencing extreme hot and dry conditions has been increasing over the past several decades, consistent with expectation from anthropogenic climate change. A clear concurrent change in precipitation, however, has not been confirmed. Vapor pressure deficit (VPD), combining temperature and humidity, is utilized here as an indicator of the background atmospheric conditions associated with meteorological drought. Furthermore, atmospheric conditions associated with warm season drought events are assessed by partitioning associated VPD anomalies into the temperature and humidity components. This approach suggests that the concurrence of anomalously high temperature and low humidity was an important driver of the rapid development and evolution of the exceptionally severe 2011 Texas and the 2012 Great Plains droughts. By classification of a decade of extreme drought events and tracking them back in time, it was found that near surface atmospheric temperature and humidity add essential information to the commonly used precipitation-based drought indicators and can advance efforts to determine the timing of drought onset and its severity

    An Update on Oceanic Precipitation Rate and its Zonal Distribution in Light of Advanced Observations from Space

    Get PDF
    This study contributes to the estimation of the global mean and zonal distribution of oceanic precipitation rate using complementary information from advanced precipitation measuring sensors and provides an independent reference to assess current precipitation products. Precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and CloudSat cloud profiling radar (CPR) were merged, as the two complementary sensors yield an unprecedented range of sensitivity to quantify rainfall from drizzle through the most intense rates. At higher latitudes, where TRMM PR does not exist, precipitation estimates from Aqua's Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) complemented CloudSat CPR to capture intense precipitation rates. The high sensitivity of CPR allows estimation of snow rate, an important type of precipitation at high latitudes, not directly observed in current merged precipitation products. Using the merged precipitation estimate from the CloudSat, TRMM, and Aqua platforms (this estimate is abbreviated to MCTA), the authors' estimate for 3-yr (2007-09) nearglobal (80degS-80degN) oceanic mean precipitation rate is approx. 2.94mm/day. This new estimate of mean global ocean precipitation is about 9% higher than that of the corresponding Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) value (2.68mm/day) and about 4% higher than that of the Global Precipitation Climatology Project (GPCP; 2.82mm/day). Furthermore, MCTA suggests distinct differences in the zonal distribution of precipitation rate from that depicted in GPCPand CMAP, especially in the Southern Hemisphere

    Using the Hair Removal Laser in the Axillary Region and its Effect on Normal Microbial Flora

    Get PDF
    Introduction: The axillary hair removal laser is one of the most often used procedures to treat unwanted hairs in that region. Employing this technology can be helpful in decreasing the bromhidrosis.Methods: In the present research, a clinical trial study over the effect of the hair removal laser on normal microbial flora at the axillary region is presented. The intervention group consisted of 30 women referred to the dermatologic clinic for the purpose of removing axillary hair by the alexandrite 755 nm laser and the control group consisted of 30 women referred to the same clinic for any other reasons. Both groups were evaluated for the type of bacterial strains on the first visit and after three and six months.Results: The results showed that the sense of sweat smell improved by about 63% after the last laser session. The frequency of all bacterial strains decreased in the intervention group except Staphylococcus epidermidis which was significant. In the control group, there was no significant decrement in any bacterial strains and even the prevalence of more strains including Staphylococcus aureus and S. epidermidis increased. Counting the mean bacterial colon showed a slight decrement of the bacterial count following the laser.Conclusion: The use of laser radiation, even with the aim of hair removal, can alter the microbial flora, and it can be accompanied by the improvement of the smell of sweat. The effect of the laser on different bacterial strains is quite different, which can depend on the amount of energy, the wavelength, the characteristics of the area under the laser, and also the structural properties of the membrane of the microorganism itself

    Computing Accurate Probabilistic Estimates of One-D Entropy from Equiprobable Random Samples

    Get PDF
    We develop a simple Quantile Spacing (QS) method for accurate probabilistic estimation of one-dimensional entropy from equiprobable random samples, and compare it with the popular Bin-Counting (BC) method. In contrast to BC, which uses equal-width bins with varying probability mass, the QS method uses estimates of the quantiles that divide the support of the data generating probability density function (pdf) into equal-probability-mass intervals. Whereas BC requires optimal tuning of a bin-width hyper-parameter whose value varies with sample size and shape of the pdf, QS requires specification of the number of quantiles to be used. Results indicate, for the class of distributions tested, that the optimal number of quantile-spacings is a fixed fraction of the sample size (empirically determined to be ~0.25-0.35), and that this value is relatively insensitive to distributional form or sample size, providing a clear advantage over BC since hyperparameter tuning is not required. Bootstrapping is used to approximate the sampling variability distribution of the resulting entropy estimate, and is shown to accurately reflect the true uncertainty. For the four distributional forms studied (Gaussian, Log-Normal, Exponential and Bimodal Gaussian Mixture), expected estimation bias is less than 1% and uncertainty is relatively low even for very small sample sizes. We speculate that estimating quantile locations, rather than bin-probabilities, results in more efficient use of the information in the data to approximate the underlying shape of an unknown data generating pdf.Comment: 23 pages, 12 figure

    SMAP Soil Moisture Change as an Indicator of Drought Conditions

    Get PDF
    Soil moisture is considered a key variable in drought analysis. The soil moisture dynamics given by the change in soil moisture between two time periods can provide information on the intensification or improvement of drought conditions. The aim of this work is to analyze how the soil moisture dynamics respond to changes in drought conditions over multiple time intervals. The change in soil moisture estimated from the Soil Moisture Active Passive (SMAP) satellite observations was compared with the United States Drought Monitor (USDM) and the Standardized Precipitation Index (SPI) over the contiguous United States (CONUS). The results indicated that the soil moisture change over 13-week and 26-week intervals is able to capture the changes in drought intensity levels in the USDM, and the change over a four-week interval correlated well with the one-month SPI values. This suggested that a short-term negative soil moisture change may indicate a lack of precipitation, whereas a persistent long-term negative soil moisture change may indicate severe drought conditions. The results further indicate that the inclusion of soil moisture change will add more value to the existing drought-monitoring products

    Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin

    Full text link
    The Tibetan Plateau (TP), the highest and largest plateau in the world, with complex and competing cryospheric‐hydrologic‐geodynamic processes, is particularly sensitive to anthropogenic warming. The quantitative water mass budget in the TP is poorly known. Here we examine annual changes in lake area, level, and volume during 1970s–2015. We find that a complex pattern of lake volume changes during 1970s–2015: a slight decrease of −2.78 Gt yr−1 during 1970s–1995, followed by a rapid increase of 12.53 Gt yr−1 during 1996–2010, and then a recent deceleration (1.46 Gt yr−1) during 2011–2015. We then estimated the recent water mass budget for the Inner TP, 2003–2009, including changes in terrestrial water storage, lake volume, glacier mass, snow water equivalent (SWE), soil moisture, and permafrost. The dominant components of water mass budget, namely, changes in lake volume (7.72 ± 0.63 Gt yr−1) and groundwater storage (5.01 ± 1.59 Gt yr−1), increased at similar rates. We find that increased net precipitation contributes the majority of water supply (74%) for the lake volume increase, followed by glacier mass loss (13%), and ground ice melt due to permafrost degradation (12%). Other term such as SWE (1%) makes a relatively small contribution. These results suggest that the hydrologic cycle in the TP has intensified remarkably during recent decades
    • 

    corecore