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Abstract: We develop a simple Quantile Spacing (QS) method for accurate probabilistic estimation
of one-dimensional entropy from equiprobable random samples, and compare it with the popular
Bin-Counting (BC) and Kernel Density (KD) methods. In contrast to BC, which uses equal-width bins
with varying probability mass, the QS method uses estimates of the quantiles that divide the support
of the data generating probability density function (pdf) into equal-probability-mass intervals. And,
whereas BC and KD each require optimal tuning of a hyper-parameter whose value varies with
sample size and shape of the pdf, QS only requires specification of the number of quantiles to be
used. Results indicate, for the class of distributions tested, that the optimal number of quantiles is
a fixed fraction of the sample size (empirically determined to be ∼0.25–0.35), and that this value is
relatively insensitive to distributional form or sample size. This provides a clear advantage over
BC and KD since hyper-parameter tuning is not required. Further, unlike KD, there is no need to
select an appropriate kernel-type, and so QS is applicable to pdfs of arbitrary shape, including those
with discontinuous slope and/or magnitude. Bootstrapping is used to approximate the sampling
variability distribution of the resulting entropy estimate, and is shown to accurately reflect the true
uncertainty. For the four distributional forms studied (Gaussian, Log-Normal, Exponential and Bimodal
Gaussian Mixture), expected estimation bias is less than 1% and uncertainty is low even for samples of
as few as 100 data points; in contrast, for KD the small sample bias can be as large as −10% and for
BC as large as −50%. We speculate that estimating quantile locations, rather than bin-probabilities,
results in more efficient use of the information in the data to approximate the underlying shape of an
unknown data generating pdf.

Keywords: entropy; estimation; quantile spacing; accuracy; uncertainty; bootstrap; small-sample
efficiency

1. Introduction

Consider a data generating process p(x) from which a finite size set of NS random,
equiprobable, independent identically distributed (iid) samples S = {si, i = 1 . . . NS} is
drawn. In general, we may not know the nature and mathematical form of p(x), and our
goal is to compute an estimate Ĥp(X|S) of the Entropy Hp(X) of p(x).

In the idealized case, where X is a one-dimensional continuous random variable
and the parametric mathematical form of p(x) is known, we can apply the definition of
differential Entropy [1,2] to compute:

Hp(X) = Ep{−ln(p(x))} =
∫ +∞

−∞
−ln(p(x))·p(x)·dx (1)
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Explicit, closed form solutions for Hp(X) are available for a variety of probability
density functions (pdfs). For a variety of others, closed form solutions are not available,
and one can compute Hp(X) via numerical integration of Equation (1). In all such cases,
entropy estimation consists of first obtaining estimates θ̂|S of the parameters θ of the known
parametric density p(x|θ) and then computing the entropy estimate Ĥp|θ̂(X|S) by plugging

p
(

x|θ̂
)

into Equation (1). Any bias and uncertainty in the entropy estimate will depend
on the accuracy and uncertainty of the parameter estimates θ̂. If the form of p(x|θ) is
“assumed” rather than explicitly known, then additional bias will stem from the inadequacy
of this assumption.

In most practical situations the mathematical form of p(x) is not known, and S must
first be used to obtain a data-based estimate p̂(x|S), from which an estimate Ĥp̂(X|S) can
be obtained via numerical integration of Equation (1). In generating p̂(x|S), consistency
with prior knowledge regarding the nature of p(x) must be ensured—for example, X may
be known to take on only positive values, or values on some finite range. Consistency
must also be maintained with the information in S. Further, the sample size NS must be
sufficiently large that the information in S provides an accurate characterization of p(x)—in
other words, that S is informationally representative and consistent.

To summarize, for the case that X is a continuous random variable, entropy estimation
from data involves two steps; (i) Use of S to estimate p̂(x|S), and (ii) Numerical integration
to compute an estimate of entropy using Equation (2):

Ĥp̂(X|S) = Ep̂{−ln( p̂(x|S))} =
∫ +∞

−∞
−ln( p̂(x|S))· p̂(x|S)·dx (2)

Accordingly, the estimate Ĥp̂(X|S) has two potential sources of error. One is due
to the use of p̂(x|S) to approximate p(x), and the other is due to imperfect numerical
integration. To maximize accuracy, we must ensure that both these errors are minimized.
Further, Ĥp̂(X|S) is a statistic that is subject to inherent random variability associated with
the sample S, and so it will be useful to have an uncertainty estimate, in some form such as
confidence intervals.

For cases where X is discrete and can take on only a finite set of values
{

x(j), j = 1, . . . NX

}
,

if the mathematical form of p(x) =
{

p
(

x(j)
)

, j = 1, . . . NX

}
is known, then Hp(X) can be

computed by applying the mathematical definition of discrete Entropy:

Hp(X) = Ep{−ln(p(x))} = −
NX

∑
j=1

ln
(

p
(

x(j)
))
·p
(

x(j)
)

(3)

Here, given a data sample S, pdf estimation amounts simply to counting the number
n(j) of data points in S that take on the value x(j), and setting p̂(x|S) = { p̂

(
x(j)|S

)
= n(j)

NS
,

j = 1, . . . NX} and p̂(x|S) = 0 otherwise. Entropy estimation then consists of applying
the equation:

Ĥp̂(X|S) = −
NX

∑
j=1

ln
(

p̂
(

x(j)|S
))
· p̂
(

x(j)|S
)

(4)

In this case, there is no numerical integration error; any bias in the estimate is entirely
due to p̂

(
x(j)|S

)
6= p

(
x(j)
)

, which occurs due to S not being perfectly informative about
p(x), while uncertainty is due to S being a random sample drawn from p(x). If S is a rep-
resentative sample, as NS → ∞ then p̂

(
x(j)|S

)
→ p

(
x(j)
)

and hence Ĥp̂(X|S)→ Hp(x),
so that estimation bias and uncertainty will both tend towards zero as the sample size
is increased.

When the one-dimensional random variable X is some hybrid combination of discrete
and continuous, the relative fractions of total probability mass associated with the discrete
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and continuous portions of the pdf must also be estimated. The general principles discussed
herein also apply to the hybrid case, and we will not consider it further in this paper; for a
relevant discussion of estimating entropy for mixed discrete-continuous random variables,
see [3].

2. Popular Approaches to Estimating Distributions from Data

We focus here on the case of a one-dimensional continuous random variable X for
which the mathematical form of p(x) is unknown. [4] provides a summary of methods for
the estimation of pdfs from data, while [5] provides an overview of methods for estimating
the differential entropy of a continuous random variable. The three most widely used
“non-parametric” methods for estimating differential entropy by pdf approximation are
the: (a) Bin-Counting (BC) or piece-wise constant frequency histogram method, (b) Kernel
Density (KD) method, and (c) Average Shifted Histogram (ASH) method. Ref [6] points
out that these can all be asymptotically viewed as “Kernel” methods, where the bins in
the BC and ASH approaches are understood as treating the data points falling in each bin
as being from a locally uniform distribution. For a theoretical discussion of the basis for
non-parameteric estimation of a density function see also [7].

As discussed by [8,9], appropriate selection of the bin-width (effectively a smoothing
hyper-parameter) is critical to success of the BC and ASH histogram-based methods. Bin-
widths that are too small can result in overly rough approximation of the underlying
distribution (increasing the variance), while bin-widths that are overly large can result in
an overly smooth approximation (introducing bias). Therefore, one typically has to choose
values that balance variance and bias errors. [8] and [10] present expressions for “optimal”
bin width when using BC, including the “normal reference rule” that is applicable when
the pdf is approximately Gaussian, and the “oversmoothed bandwidth rule” that places an
upper-bound on the bin-width. Similarly, [6] shows that while KD is more computationally
costly to implement than BC, its accuracy and convergence are better, and they derive
optimal values for the KD smoothing hyper-parameter. [11] also proposed the ASH method,
which refines BC by sub-dividing each histogram bin into sub-bins, with computational
cost similar to BC and accuracy approaching that of KD. Note that, if prior information
on the shape of p(x) is available, or if a representation with the smallest number of bins is
desired, then variable bin width methods may be more appropriate (e.g., [12–16]).

The BC, KD and ASH methods all require hyper-parameter tuning to be successful.
BC requires selection of the histogram bin-widths (and thereby the number of bins), KD
requires selection of the form of the Kernel function and tuning of its parameters, and
ASH requires selection of the form of a Kernel function and tuning of the coarse bin width,
and number of sub-bins. While recommendations are provided to guide the selection of
these “hyper-parameters”, these recommendations depend on theoretical arguments based
in assumptions regarding the typical underlying forms of p(x). Based on empirical studies,
and given that we typically do not know the “true” form of p(x) to be used as a reference
for tuning, [3] recommend use of BC and KD rather than the ASH method.

Finally, since BC effectively treats the pdf as being discrete, and therefore uses Equation
(4) with each of the indices j corresponding to one of the histogram bins, the loss of
entropy associated with implementing the discrete constant bin-width approximation is
approximately ln(∆), where ∆ is the bin width, provided ∆ is sufficiently small [2]. This
fact allows conversion of the discrete entropy estimate to differential entropy simply by
adding ln(∆) to the discrete entropy estimate.

In summary, while BC and KD can be used to obtain accurate estimates of entropy
for pdfs of arbitrary form, hyper-parameter tuning is required to ensure that good results
are obtained. In the next section, we propose an alternative method to approximate p(x)
that does not require counting the numbers of samples in “bins”, and is instead based on
estimating the quantile positions of p(x). We first compare the properties and performance
of the method with BC (rather than with KD or ASH) for a range of distributions because
(i) BC is arguably the most straightforward and popular method, (ii) BC shares important
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similarities with the proposed approach, but also shows distinct differences worthy of
discussion, and (iii) we seek good performance for a wide range of distributions. At the
request of a reviewer, we further report performance of KD on the same distributions,
reinforcing the findings of [17] that KD performance can depend strongly on distribution
shape and sample size.

3. Proposed Quantile Spacing (QS) Approach

We present an approach to computing an estimate Ĥp(X|S) of Entropy Hp(X) given a
set of available samples S for the case where X is a one-dimensional continuous random
variable and the mathematical form of the data generating process p(x) is unknown. The
approach is based in the assumption that p(x) can be approximated as piecewise constant
on the intervals between quantile locations, and consists of three steps.

3.1. Step 1—Assumption about Support Interval

The first step is to assume that p(x) exists only on some finite support interval
[xmin, xmax], where xmin ≤ min{S} and xmax ≥ max{S}; i.e., we treat p(x) as being 0
everywhere outside of the interval [xmin, xmax]. Given that the true support of X may, in
reality, be as extensive as [−∞,+∞], we allow the selection of this interval (based on prior
knowledge, such as physical realism) to be as extensive as appropriate and/or necessary.
However, as we show later, the impact of this selection can be quite significant and will
need special attention.

3.2. Step 2—Assumption about Approximate Form of p(X)

The second step is to assume that p(x) can be approximated as piecewise con-
stant on the intervals between quantiles Z =

{
z0, z1, z2, . . . , zNZ

}
associated with the{

0, 1
NZ

, 2
NZ

, . . . NZ−1
NZ

, 1
}

non-exceedance probabilities of p(x), where NZ represents the
number of quantiles, z0 = xmin, and zNZ = xmax. This corresponds to making the minimally
informative (maximum entropy) assumption that p(x) is ‘uniform’ over each of the quantile
intervals

[
zj−1, zj

]
for j = 1, . . . NZ, which is equivalent to assuming that the corresponding

cumulative distribution function P(x) is piecewise linear (i.e., increases linearly between
zj−1 and zj).

Assuming perfect knowledge of the locations of the quantiles Z, this approximation
corresponds to:

p(x) ≈ p̂(x|Z) = pj
j−1 =

K
∆j

for zj−1 ≤ X < zj, j = 1, . . . NZ (5)

where ∆j = zj − zj−1. To ensure that p̂(x|Z) integrates to 1.0 over the support region
[xmin, xmax] we have K = 1

NZ
. Accordingly, our entropy estimate is given by:

Ĥp̂(X|Z) =
NZ

∑
j=1

∫ zj

zj−1

−ln
(

pj
j−1

)
·pj

j−1·dx (6)

=
1

NZ
·

NZ

∑
j=1

ln
(

NZ·∆j
)

(7)

= ln(NZ) +
1

NZ
·

NZ

∑
j=1

ln
(
∆j
)

(8)

From Equation (8) we see that the estimate depends on the logs of the spacings between
quantiles, and is defined by the average of these values. Further, we can define the error
due to piecewise constant approximation of p(x) as ∆Hp,p̂(X|Z) = Ĥp̂(X|Z)− Hp(X).
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3.3. Step 3—Estimation of the Quantiles of p(x)
The third step is to use the available data S to compute estimates of the quantiles Z

to be plugged into Equation (6). Of course, given a finite sample size NS, the number of
quantiles NZ that can be estimated will, in general, be much smaller than the sample size
NS (i.e., NZ � NS).

Various methods for computing estimates of the quantiles are available. Here, we
use a relatively simple approach in which NK sample subsets Sk, k = 1, . . . , NK, each
of size NZ − 1 (i.e., Sk =

{
sk

1, sk
2, . . . , sk

NZ−1

}
) are drawn from the available sample set S,

where the samples in each subset are drawn from S without replacement so that the values
obtained in each subset are unique (not-repeated). For each subset, we sort the values
in increasing order to obtain Zk =

{
zk

1, zk
2, . . . , zk

NZ−1

}
, thereby obtaining NK estimates{

z1
j , z2

j , . . . , zNK
j

}
for each zj, j = 1, . . . NZ − 1. This procedure results in an empirical

estimate of the sample distribution p
(
zj|S

)
for each quantile zj, j = 1, . . . NZ − 1. Finally,

we compute ẑj =
1

NK
∑NK

k=1 zk
j , and set Ẑ =

{
xmin, ẑ1, ẑ2, . . . , ẑNZ−1, xmax

}
. Plugging these

values into Equations (7) and (8), we get:

Ĥp̂
(
X|Ẑ

)
=

1
NZ
·

NZ

∑
j=1

ln
(

NZ·∆̂j
)

(9)

= ln(NZ) +
1

NZ
·

NZ

∑
j=1

ln
(
∆̂j
)

(10)

where ∆̂j = ẑj − ẑj−1. For practical computation, to avoid numerical problems as NZ

becomes large so that ∆̂j becomes very small and ln
(
∆̂j
)

approaches −∞, we will actually
use Equation (9). Further, we define the additional error due purely to imperfect quantile
estimation to be ∆Hp̂

(
X|Ẑ, Z

)
= Ĥp̂

(
X|Ẑ

)
− Hp̂(X|Z).

3.4. Random Variability Associated with the QS-Based Entropy Estimate

Given that the quantile spacing estimates
{

∆̂j, j = 1, . . . , NZ
}

are subject to random
sampling variability associated with (i) the sampling of S from p(x), and (ii) estimation
of the quantile positions ẑj, the entropy estimate Ĥp̂

(
X|Ẑ

)
will also be subject to random

sampling variability. As shown later, we can generate probabilistic estimates of the nature
and size of this error from the empirical estimates of p

(
zj|S

)
obtained in Step 3, and by

bootstrapping on S.

4. Properties of the Proposed Approach

The accuracy of the estimate Ĥp̂
(
X|Ẑ

)
obtained using the QS method outlined above

depends on the following four assumptions, each of which we discuss below:

(i) A1: The piecewise constant approximation p̂(x|Z) of p(x) on the intervals between
the quantile positions is adequate

(ii) A2: The quantile positions Z =
{

z0, z1, z2, . . . , zNZ

}
of p(x) have been estimated

accurately.
(iii) A3: The pdf p(x) exists only on the support interval [xmin, xmax], which has been

properly chosen
(iv) A4: The sample set S is consistent, representative and sufficiently informative about

the underlying nature of p(x)

4.1. Implications of the Piecewise Constant Assumption

Assume that p̂(x|Z) provides a piecewise-constant estimate of p(x) and that the
quantile positions Z =

{
z0, z1, z2, . . . , zNZ

}
associated with a given choice for NZ are

perfectly known. Since the continuous shape of the cumulative distribution function (cdf)
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P(x) can be approximated to an arbitrary degree of accuracy by a sufficient number of
piecewise linear segments, we will have P̂(x|Z)→ P(x) as NZ → ∞ .

However, an insufficiently accurate approximation will result in a pdf estimate that
is not sufficiently smooth, so that the entropy estimate will be biased. This bias will, in
general, be positive (overestimation) because the piecewise-constant form p̂(x|Z) used
to approximate p(x) will always be shifted slightly in the direction of larger entropy; i.e.,
each piecewise constant segment in p̂(x|Z) is a maximum-entropy (uniform distribution)
approximation of the corresponding segment of p(x). However, the bias can be reduced
and made arbitrarily small by increasing NZ until the Kullback-Leibler divergence between
p̂(x|Z) and p(x) is so small that the information loss associated with use of p̂(x|Z) in place
of p(x) in Equation (1) is negligible.

The left panel of Figure 1 shows how this bias in the estimate of Hp(X), due solely to
piecewise constant approximation of the pdf (no sample data are involved), declines with
increasing NZ for three pdf forms of varying functional complexity (Gaussian, Log-Normal
and Exponential), each using a parameter choice such that its theoretical entropy Hp(X) = 1.
Also shown, for completeness, are results for the Uniform pdf where only one piecewise
constant bin is theoretically required. Note that because Hp(k·(X− µx)) = Hp(X) + ln k,
the entropy can be changed to any desired value simply by rescaling on X. For these
theoretical examples, the quantile positions are known exactly, and the resulting estimation
bias is due only to the piecewise constant approximation of p(x). However, since the
theoretical pdfs used for this example all have infinite support, whereas the piecewise
approximation requires specification of a finite support interval, for the latter we set
[xmin, xmax] to be the theoretical locations where P(z0) = ε and P

(
zNZ

)
= 1− ε respectively,

with ε chosen to be some sufficiently small number (we used ε = 10−5). We see empirically
that bias due to the piecewise constant approximation declines to zero approximately as
an exponential function of log NZ so that the absolute percent bias is less than ∼10% for
NZ > 10–30, less than ∼5% for NZ > 50, and less than ∼1% for NZ > 200.

Figure 1. Plots showing how entropy estimation bias associated with the piecewise-constant approximation of various
theoretical pdf forms varies with the number of quantiles ((a); QS method) or number of equal-width bins ((b); BC method)
used in the approximation. The dashed horizontal lines indicate ±1% and ±5% bias error. No sampling is involved and the
bias is due purely to the piecewise constant assumption. For QS, the locations of the quantiles are set to their theoretical
values. To address the “infinite support” issue, [xmin, xmax] were set to be the locations where P(z0) = ε and P(zNZ ) = 1− ε

respectively, with ε = 10−5. In both cases, bias approaches zero as the number of piecewise-constant units is increased. For
the QS method, the decline in bias is approximately linear in the log-log space (see inlay in the left subplot).
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In practice, given a finite sample size NS, our ability to increase the value of NZ will
be constrained by the size of the sample (i.e., NZ < NS). This is because when the form
of p(x) is unknown, the locations of the quantile positions must be estimated using the
information provided by S. Further, what constitutes a sufficiently large value for NZ will
depend the complexity of the underlying shape of p(x).

4.2. Implications of Imperfect Quantile Position Estimation

Assume that NZ is large enough for the piecewise constant pdf approximation to
be sufficiently accurate, but that the estimates

{
ẑ0, ẑ2, . . . , ẑNZ

}
of the locations of the

quantiles are imperfect. Clearly, this can affect the estimate of entropy computed via
Equation (9) by distorting the shape of p̂

(
x|Ẑ
)

away from p̂(x|Z), and therefore away from
p(x). Further, the uncertainty associated with the quantile estimates will translate into
uncertainty associated with the estimate of entropy.

In general, as the number of quantiles NZ is increased, the inter-sample spacings
associated with each ordered subset Zk =

{
zk

1, zk
2, . . . , zk

NZ−1

}
, k = 1, . . . , NK will decrease,

so that the distribution of possible locations for each quantile zk
j , j = 1, . . . NZ − 1 will

progressively become more tightly constrained. This means that the bias associated with
each estimated quantile ẑj will reduce progressively towards zero as NZ is increased
(constrained only by sample size NS) and the variance of the estimate ẑj will decline
towards zero as the number of subsamples NK is increased.

Figure 2 illustrates how bias and uncertainty associated with estimates of the quantiles
diminish with increasing NZ and NK. Experimental results are shown for the Log-Normal
density with µ = 0 and σ2 = 0.6577 (theoretical entropy Hp(X) = 1), with the y-axis
indicating percent error in the quantile estimates corresponding to the 90% (green), 95%
(purple) and 99% (turquoise) non-exceedance probabilities. In these plots, there is no
distorting effect of sample size NS (the sample size is effectively infinite), since when
computing the estimates of the quantiles (as explained in Section 3.3) we draw subsamples
of size NZ directly from the theoretical pdf.

Figure 2. Plots showing bias and uncertainty associated with estimates of the quantiles derived from random samples, for
the Log-Normal pdf. Uncertainty associated with random sampling variability is estimated by repeating each experiment
500 times. In both subplots, for each case, the box plots are shown side by side to improve legibility. (a) Subplot showing
results varying NZ = [100, 200, 500, 1000, 2000, 5000, 10000] for fixed NK = 500. (b) Subplot showing results varying
NK = [10, 20, 50, 100, 200, 500] for fixed NZ = 1000.
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The left-side plot shows, for NK = 500 subsamples, how the biases and uncertainties
diminish as NZ is increased. The boxplots reflect uncertainty due to random sampling
variability, estimated by repeating each experiment 500 times (by drawing new samples
from the pdf). As expected, for smaller NZ the quantile location estimates tend to be
negatively biased, particularly for those in the more extreme tail locations of the distribution.
However, for NZ = 150 the bias associated with the 99% non-exceedance probability
quantile is less than −5%, for NZ ≈ 500 the corresponding bias is less than −2%, and for
NZ = 1500 it is less than −1%. The right-side plot shows, for a fixed value of NZ = 1000,
how the uncertainties diminish but the biases remain relatively constant as the number of
subsamples NK is increased. Overall, the uncertainty becomes quite small for NK > 200.

4.3. Implications of the Finite Support Assumption

Assume that NZ has been chosen large enough for the piecewise constant pdf approx-
imation to be sufficiently accurate, and that the exact quantile positions associated with
this choice for NZ are known. The equation for estimating entropy (Equation (9)) can be
decomposed into three terms:

Hp̂(X|Z) = 1
NZ
·

NZ

∑
j=1

ln
(

NZ·∆j
)
= Hz1

xmin + H
zNZ−1
z1 + Hxmax

NZ−1 (11)

where Hz1
xmin = ln(NZ ·∆1)

NZ
, H

zNZ−1
z1 = 1

NZ
·

NZ−1
∑

j=2
ln
(

NZ·∆j
)

and Hxmax
NZ−1 =

ln(NZ ·∆NZ )
NZ

, and

where ∆j indicates the true inter-quantile spacings. Only the first and last terms Hz1
xmin

and Hxmax
NZ−1 are affected by the choices for xmin and xmax through ∆1 = z1 − xmin and

∆NZ = xmax − zNZ−1.
Clearly, if p(x) is bounded both above and below by specific known values, then there

is no issue. However, if the support of p(x) is not known, or if one or both bounds can
reasonably be expected to extend to ±∞ (as appropriate), then the choice for the relevant
limiting value (xmin or xmax) can significantly affect the computed value for Ĥp̂. To see
this, note that the first term Hz1

xmin can be made to vary from −∞ when ∆1 = 0, to +∞
when ∆1 = ∞, passing through zero when ∆1 = 1

NZ
; and similarly for the last term Hxmax

NZ−1.
Therefore, the error associated with Ĥp̂ can be made arbitrarily negatively large by choosing
∆1 and ∆NZ to be too small, or arbitrarily positively large by choosing ∆1 and ∆NZ to be
too large.

In practice, when dealing with samples S from some unknown data generating process,
we will often have only the samples themselves from which to infer the support of p(x),
and therefore can only confidently state that xmin ≤ min{S} and xmax ≥ max{S}. One
possibility could be to ignore the fractional contributions of the terms Hz1

xmin and Hxmax
NZ−1

corresponding to the (unknown) portions of the pdf and instead use as our estimate
H∗p̂(X|Z) = H

zNZ−1
z1 . This would be equivalent to setting ∆1 = ∆NZ = 1

NZ
, so that Xmin =

z1 − 1
NZ

and Xmax = zNZ−1 +
1

NZ
. By doing so, we would be ignoring a portion of the

overall entropy associated with the pdf and can therefore expect to obtain an underestimate.
However, this bias error BE = Hp̂(X|Z)− H∗p̂(X|Z) will tend to zero as NZ is increased.

An alternative approach, that we recommend in this paper, is to set xmin = min{S}
and xmax = max{S}. In this case, there will be random variability associated with the
sampled values for min{S} and max{S} and so the bias in our estimate H∗p̂(X|Z) can be
either negative or positive. Nonetheless, this bias error BE will still tend to zero as NZ
is increased.

Note that the percentage contributions of the entropy fractions Hz1
xmin and Hxmax

NZ−1 to the
total entropy Hp(X|Z) will depend on the nature of the underlying pdf. Figure 3 illustrates
this for three pdfs (Gaussian which has infinite extent on both sides, and the Exponential
and Log-Normal which have infinite extent on only one side), assuming no estimation
error associated with the quantile locations. For the Gaussian (blue) and Exponential (red)
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densities, the largest fractional entropy contributions are clearly from the tail regions,
whereas for the Log-Normal (orange) density this is not so. So, the entropy fractions can
be proportionally quite large or small at the extremes, depending on the form of the pdf.
Nonetheless, the overall entropy fraction associated with each quantile spacing diminishes
with increasing NZ. For the examples shown, when NZ = 100 (left plot) the maximum
contributions associated with a quantile spacing are less than 6% and when NZ = 1000
(right plot) become less than 1%. This plot illustrates clearly the most important issue that
must be dealt with when estimating entropy from samples.

Figure 3. Plots showing percentage entropy fraction associated with each quantile spacing for the Gaussian, Exponential and
Log-Normal pdfs, for NZ = 100 (a), and NZ = 1000 (b). For the Uniform pdf (not shown to avoid complicating the figures)
the percentage entropy fraction associated with each quantile spacing is a horizontal line (at 1% in the left panel, and at 0.1%
in the right panel). Note that the entropy fractions can be proportionally quite large or small at the extremes, depending on
the form of the pdf. However, the overall entropy fraction associated with each quantile spacing diminishes with increasing
NZ. For the examples shown, the maximum contributions associated with a quantile spacing are less than 6% for NZ = 100
(a), and become less than 1% for NZ = 1000 (b).

So, on the one hand, the cumulative entropy fractions associated with the tail regions
of p(x) that lie beyond min{S} and max{S} are impossible to know. On the other, the
individual contributions of these fractions associated with the extreme quantile spacings
∆1 and/or ∆NZ where p(x) is small can be quite a bit larger than those associated with the
contributions from intermediate quantile spacings. Overall, the only real way to control the
estimation bias and uncertainty associated with these extreme regions is to use a sufficiently
large value for NZ so that the relative contribution of the extreme regions is small. This
will in turn, of course, be constrained by the sample size.

4.4. Combined Effect of the Piecewise Constant Assumption, Finite Support Assumption, and
Quantile Position Estimation Using Finite Sample Sizes

In Section 4.1, we saw that the effect of the piecewise constant assumption on the
QS-based estimate of entropy is positive bias that diminishes with increasing NZ. Similarly,
Section 4.2 showed that the biases associated with the quantiles diminish with increasing
NZ, while the corresponding uncertainties diminish with increasing NK. As mentioned
earlier, the bias in each quantile position will be towards the direction of locally higher
probability mass (since more of the equiprobable random samples will tend to drawn from
this region), and therefore the estimate p̂

(
x|Ẑ
)

of p(x) will be distorted in the direction of
having smaller “dispersion” (i.e., p̂

(
x|Ẑ
)

will tend to be more ‘peaked’ than p(X)), resulting
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in negative bias in the corresponding estimate of entropy. Finally, Section 4.3 discussed
the implications of the finite support assumption, given that xmin and xmax will often not
be known.

Figure 4 illustrates the combined effect of these assumptions. Here we show how
the overall percentage error in the QS-based estimate of entropy varies as a function of
α = (NZ/NS), where α expresses the number of quantiles NZ as a fraction of the sample
size NS. Sample sets of given size NS are drawn from the Gaussian (left panel), Exponential
(middle panel) and Log-Normal (right panel) densities, the quantiles are estimated using
the procedure discussed in Section 3.3, xmin and xmax are set to be the smallest and largest
data values in the set (Section 4.3), and entropy is estimated using Equation (9) for different
selected values of NZ. To account for sampling variability, the results are averaged over
500 different sample sets drawn randomly from the parent density.

Figure 4. Plots showing expected percent error in the QS-based estimate of entropy derived from random samples, as a
function of α = 100 ∗ (NZ/NS), which expresses the number of quantiles NZ as a fractional percentage of the sample size
NS. Results are averaged over 500 trials obtained by drawing sample sets of size NS from the theoretical pdf, where xmin

and xmax are set to be the smallest and largest data values in the particular sample. Results are shown for different sample
sizes NS = [100, 200, 500, 1000, 2000, 5000], for the Gaussian (a), Exponential (b) and Log-Normal (c) densities. In each case,
when α is small the estimation bias is positive (overestimation) and can be greater than 10% for α < 10%, and crosses zero to
become negative (underestimation) when α > 25–35%. The marginal cost of setting α too large is low compared to setting α

too small. As NS increases, the bias diminishes. The optimal choice is α ≈ 25–30% and is relatively insensitive to pdf shape
or sample size.

The plots show how percentage estimation error (bias) varies as α (and hence NZ)
changes as a fraction of sample size NS, for different sample sizes from 100 to 5000. As
might be expected, in each case when α is too small the estimation bias is positive (over-
estimation) and can be quite large due to the piecewise constant approximation. However,
as α is increased the estimation bias decreases rapidly, crosses zero, and becomes negative
(under-estimation) due to the combined effects of quantile position estimation bias and use
of the smallest and largest sample values to approximate xmin and xmax. Most interesting
is the fact that all of the curves cross zero at approximately α ≈ 0.25–0.35, and that this
location does not seem to depend strongly on the sample size or shape of the pdf. Further,
the marginal cost of setting α too large is low (less than −5% for α = 0.5) compared to
setting α too small. Overall, the expected bias error diminishes with increasing sample size
NS and the optimal choice for α ≈ 0.25–0.35.

Figure 5 illustrates both the bias and uncertainty in the estimate of entropy as a
function of sample size NS when we specified the number of quantiles NZ to be 25% of
the sample size (i.e., α = 0.25). The uncertainty intervals are due to sampling variability,
estimated by drawing 500 different sample sets from the parent population. The results
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show that uncertainty due to sampling variability diminishes rapidly with sample size,
becoming relatively small for large sample sizes.

Figure 5. Plots showing bias and uncertainty in the QS-based estimate of entropy derived from
random samples, as a function of sample size NS, when the number of quantiles NZ is set to 25%
of the sample size (α = 0.25), and xmin and xmax are respectively set to be the smallest and largest
data values in the particular sample. The uncertainty shown is due to random sampling variability,
estimated by drawing 500 different samples from the parent density. Results are shown for the
Gaussian (blue), Exponential (red) and Log-Normal (orange) densities; box plots are shown side by side
to improve legibility. As sample size NS increases, the uncertainty diminishes.

4.5. Implications of Informativeness of the Data Sample

For the results shown in Figures 4 and 5, we drew samples directly from p(x). In
practice, we must construct our entropy estimate by using a single data sample S of finite
size NS. Provided that S is a consistent and representative random sample from p(x),
with each element xi being iid, then a sufficiently large sample size NS should enable
construction of an accurate approximation p̂

(
x|Ẑ
)

of p(x) via the QS method. However,
if NS is too small, it can (i) prevent setting a sufficiently large value for NZ, and (ii) tend
to make the sets Zk sub-sampled from S to be insufficiently independent for accurate
estimates of the quantile positions of p(x) to be obtained. The overall effect will be to
prevent p̂

(
x|Ẑ
)

from approaching p(x), leading to an unreliable estimate of its entropy.
Further, even if NS is sufficiently large for p̂

(
x|Ẑ
)
→ p(x) , sampling variability asso-

ciated with randomly drawing S from p(x) will result in the entropy estimate Hp̂
(
X|Ẑ

)
being subject to statistical variability. Figure 6 shows how bootstrapped estimates of the
uncertainty will differ from those shown in Figure 5 above, in which we drew different
sample sets from the parent population. Here, each time a sample set is drawn from the
parent density we draw NB = 500 bootstrap samples of the same size NS from that sample
set, use these to obtain NB different estimates of the associated entropy (using α = 0.25),
and compute the width of the resulting inter-quartile range (IQR). We then repeat this
procedure for 500 different sample sets of the same size drawn from the parent population.
Figure 6 shows the ratio of the IQR obtained using bootstrapping to that of the actual IQR
for different sample sizes; the boxplots represent variability due to random sampling. Here,
an expected (mean) ratio value of 1.0 and small width of the boxplot is ideal, indicating that
bootstrapping provides a good estimate of the uncertainty to be associated with random
sampling variability. The results show that for smaller sample sizes (NS < 500) there is a
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tendency to overestimate the width of the inter-quartile range, but that this slight positive
bias disappears for larger sample sizes.

Figure 6. Plots showing, for different sample sizes and α = 25%, the ratio of the interquartile range
(IQR) of the QS-based estimate of entropy obtained using bootstrapping to that of the actual IQR
arising due to random sampling variability. Here, each sample set drawn from the parent density is
bootstrapped to obtain NB = 500 different estimates of the associated entropy, and the width of the
resulting inter-quartile range is computed. The procedure is repeated for 500 different sample sets
drawn from the parent population, and the graph shows the resulting variability as box-plots. The
ideal result would be a ratio of 1.0.

4.6. Summary of Properties of the Proposed Quantile Spacing Approach

To summarize, bias in the estimate Ĥp̂
(
X|Ẑ

)
can arise due to: (a) inadequacy of the

piece-wise approximation of p(x), (b) imperfect estimation of the quantile positions, (c)
imperfect knowledge of the support interval, and (d) the sample S not being consistent,
representative and sufficiently informative. Meanwhile, uncertainty in the estimate can
arise due to: (a) random sampling variability associated with estimation of the quantiles,
and (b) random sampling variability associated with drawing S from p(x). For a given
sample size NS, and provided that the sample is consistent, representative and fully
informative, the bias and uncertainty can be reduced by selecting sufficiently large values
for NZ and NK (we recommend NK = 500 and NZ = 0.25·NS), while the overall statistical
variability associated with the estimate can be estimated by bootstrapping from S.

4.7. Algorithm for Estimating Entropy via the Quantile Spacing Approach

Given a sample set S of size NS

(1) Set xmin = min{S} and xmax = max{S}
(2) Select values for ψ = {NZ, NK, NB}. Recommended default values are NZ = α·NS,

NK = 500 and NB = 500, with α = 0.25.
(3) Bootstrap a sample set Sb of size NS from S with replacement.
(4) Compute the entropy estimate Ĥp̂

(
X|Ẑb

)
using Equation (9) and the procedure out-

lined in Section 3.
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(5) Repeat the above steps NB times to generate the bootstrapped distribution of Ĥp̂
(
X|Ẑb

)
as an empirical probabilistic estimate p

(
Ĥp̂(X|S)

)
of the Entropy Hp(X) of p(x)

given S.

5. Relationship to the Bin Counting Approach

Because the proposed QS approach employs a piecewise constant approximation of
p(x), there are obvious similarities to BC. However, there are also clear differences. First,
while BC typically employs equal-width binning along the support of X, with each bin
having a different fraction of the total probability mass, QS uses variable width intervals
(analogous to “bins”) each having an identical fraction of the total probability mass (so
that the intervals are wider where p(X) is small, and narrower where p(X) is large). Both
methods require specification of the support interval [xmin, xmax].

Second, whereas BC requires counting samples falling within bins to estimate the
probability masses associated with each bin, QS involves no “bin-counting”, and, instead,
the data samples are used to estimate the positions of the quantiles. Since the probability
mass estimates obtained by counting random samples falling within bins can be highly
uncertain due to sampling variability, particularly for small sample sizes NS, this translates
into uncertainty regarding the shape of the pdf and thereby regarding its entropy. In QS,
the effect of sampling variability is to consistently provide a pdf approximation that tends
to be slightly more peaked that the true pdf, so that the bias in the entropy estimate tends
to be slightly negative. This negative bias acts to counter the positive bias resulting from
the piecewise constant approximation of the pdf.

Third, whereas BC requires selection of a bin-width hyper-parameter ∆ that represents
the appropriate bin-width required for “smoothing” to ensure an appropriate balance
between bias and variance errors, QS requires selection of a hyper-parameter α that specifies
the number of quantile positions NZ as a fraction of the sample size NS. As seen in
Figure 4, an appropriate choice for α can effectively drive estimation bias to zero, while
NK controls the degree of uncertainty associated with the estimation of the positions of
the quantiles. Further, if we desire estimates of the uncertainty in the computed value
of entropy arising due to random sampling variability, we must specify the number of
bootstraps NB. In practice, the values selected for NK and NB can be made arbitrarily large,
and our experiments suggest that setting NK = 500 (or larger) and NB = 500 (or larger)
works well in practice. Accordingly, the QS hyper-parameter α takes the place of the BC
hyper-parameter ∆ in determining the accuracy of the Entropy estimate obtained from a
given sample.

Our survey of the literature suggests that the problem of how to select the BC bin-
width hyper-parameter ∆ is not simple, and a number of different strategies have been
proposed. [18] proposed to choose the number of bins based on sample size only. [8]
estimated the optimal number of bins by minimizing the mean squared error between
the sample histogram and the “true” form of the pdf (for which the shape must be as-
sumed). [19] further developed this approach by estimating the shape of the true pdf from
the interquartile range of the sample. More recently, [20] proposed a method that does not
require choice of a hyper-parameter—using a Bayesian maximum likelihood approach,
and assuming a piecewise-constant density model, the posterior probability for the number
of bins is identified (this approach also provides uncertainty estimates for the related bin
counts). Other BC approaches that provide uncertainty estimates based on the Dirichelet,
Multinomial, and Binomial distributions are discussed by [17]. However, as shown in the
next section, in practice the “optimal” fixed bin-width can vary significantly with shape of
the pdf and with sample size.

6. Experimental Comparison with the Bin Counting Method

The right panel of Figure 1 shows the theoretical bias, due only to piecewise-constant
approximation, associated with the estimate of Hp(X) obtained using BC when the support
interval [xmin, xmax] is subdivided into equal-width intervals. We can compare the results



Entropy 2021, 23, 740 14 of 22

to the left panel of Figure 1 if we consider the number NBin of BC bins to be analogous
to the number NZ of spacings between quantiles for QS. Note that no random sampling
variability or data informativeness issues are involved in the construction of these figures.
For BC we use the theoretical fractions of probability mass associated with each of the
equal-width bins, and for QS we use the theoretical quantile positions to compute the
interval spacings. In both cases, to address the “infinite support” issue, we set [xmin, xmax]
to the locations where P(z0) = ε and P

(
zNZ

)
= 1− ε respectively, with ε = 1 × 10−5. As

with QS, the bias in entropy computed using the BC equal bin-width piecewise-continuous
approximation declines to zero with increasing numbers of bins, and becomes less that
1% when NBin ≥ 100; in fact, it can decline somewhat faster than for the QS approach.
Clearly, for the Gaussian (blue) and Exponential (red) densities, the BC constant bin-width
approximation can provide better entropy estimates with fewer bins than the QS variable
bin-width approach. However, for the skewed Log-Normal density (orange) the behavior of
the BC approximation is more complicated, whereas the QS approach shows an exponential
rate of improvement with increasing number of bins for all three density types. This
suggests that the variable bin-width QS approximation may provide a more consistent
approach for more complex distributional forms (see Section 7).

Further, Figure 7 shows the results of a “naïve” implementation of BC where the value
for NBin is varied as a fractional percentage of sample size NS. As with QS, we specify
the support interval by setting xmin = min{S} and xmax = max{S}, but here the support
interval is divided into equal-width bins so that XBIN =

{
X0, X1, X2, . . . , XNBin

}
represents

the locations of the edges of the bins (where X0 = xmin and XNBin = xmax), and therefore
∆ = xmax−xmin

NBin
. We then assume that p(x) ≈ p̂(x|XBIN) =

nj
NS

for Xj−1 ≤ X < Xj where nj
is the number of samples falling in the bin defined by Xj−1 ≤ X < Xj. Finally, we compute

the BC estimate of entropy as Ĥp̂(X|XBIN) = −
NBin
∑

j=1
ln
( nj

NS

)
· nj

NS
+ ln(∆), and follow the

convention that 0·ln(0) = 0 to handle bins where the number of samples nj = 0. Finally, we
obtain estimates for 500 different sample sets drawn from the parent density and average
the results. Results are shown for different sample sizes NS ={100, 200, 500, 1000, 2000
and 5000}. The yellow marker symbols indicate where each curve crosses the zero-bias line;
clearly NBin is not a constant fraction of NS, and for any given sample size the ratio of NBin

NS
changes with form of the pdf.

Figure 7. Plots showing how expected percentage error in the BC-based estimate of Entropy derived from random samples,
varies as a function of the number of bins NBin for the (a) Gaussian, (b), Exponential, and (c) Log-Normal densities. Results
are averaged over 500 trials obtained by drawing sample sets of size NS from the theoretical pdf, where xmin and xmax

are set to be the smallest and largest data values in the particular sample. Results are shown for different sample sizes
NS = [100, 200, 500, 1000, 2000, 5000]. When the number of bins is small the estimation bias is positive (overestimation)
but rapidly declines to cross zero and become negative (underestimation) as the number of bins is increased. In general, the
overall ranges of overestimation and underestimation bias are larger than for the QS method (see Figure 4).
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To more clearly compare these BC results with the results shown in Figure 4 for the
QS approach, Figure 8 shows a plot indicating the sampling variability distribution of the
optimal number of bins (i.e., the value of NBin for which the expected entropy estimation
error is zero) as a function of sample size for the Gaussian, Exponential and Log-Normal
densities. We see clearly that, in contrast to QS, the “expected optimal” number of bins to
achieve zero bias is neither a constant fraction of the sample size or independent of the pdf
shape, but instead declines as the sample size increases, and is different for different pdf
shapes. Further, the sampling variability associated with the optimal fractional number of
bins can be quite large, and is highly skewed at smaller sample sizes. This is in contrast with
QS where the optimal fractional number of bins is approximately constant at α ≈ 25–35%
for different sample sizes and pdf shapes.

Figure 8. Boxplots showing the sampling variability distribution of optimal fractional number of
bins (as a percentage of sample size) to achieve zero bias, when using the BC method for estimating
entropy from random samples. Results are shown for the Gaussian (blue), Exponential (red) and
Log-Normal (orange) densities. The uncertainty estimates are computed by drawing 500 different
sample data sets of a given size from the parent distribution. Note that the expected optimal fractional
number of bins varies with shape of the pdf, and is not constant but declines as the sample size
increases. This is in contrast with the QS method where the optimal fractional number of bins is
constant at ∼25% for different sample sizes and pdf shapes. Further, the variability in optimal
fractional number of bins can be large and highly skewed at smaller sample sizes.

7. Testing on Multi-Modal PDF Forms

While the types of pdf forms tested in this paper are far from exhaustive, they represent
differently shapes and degrees of skewness, including infinite support on both sides
(Gaussian), and infinite support on only one side (Exponential and Log-Normal). However,
all three forms are “unimodal”, and so we conducted an additional test for a multimodal
distributional form.

Figure 9 shows results for a Bimodal pdf (Figure 9a) constructed using a mixture of
two Gaussians N(1, 5) and N(5, 1). Since its theoretical entropy value is unknown, we
used the piecewise constant approximation method with true (known) quantile positions
to compute its entropy by progressively increasing the number of quantiles NZ until the
estimate converged to within three decimal places (Figure 9b) to the value Hp(X) ≈ 2.265
for NZ > 2000. Figure 9c,d show that QS estimation bias declines exponentially with
fractional number of quantiles and crosses zero at α ≈ 25% to 35%, in a manner similar to
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the Unimodal pdfs tested previously (Figure 4). Figure 9c shows the results for NS = 5000
samples, along with the distribution due to sampling variability (500 repetitions), showing
that the IQR falls within ±1% of the correct value and the whiskers (±2 sigma) fall within
±3%. Figure 9d shows the expected bias (estimated by averaging over 500 repetitions) for
varying sample size NS; for smaller sample sizes, the optimal value for α is closer to 20%,
while for NS ≥ 200 the value of α ≈ 25% to 35% seems to work quite well, while being
relatively insensitive to the choice of value within this range.

Figure 9. Plots showing results for the Bimodal pdf. (a) Pdf and Cdf for the Gaussian Mixture model. (b) Showing
convergence of entropy computed using piecewise constant approximation as the number of quantiles NZ is increased. (c)
Bias and sampling variability of the QS-based estimate of entropy plotted against NZ as a percentage of sample size. (d)
Expected bias of QS-based estimate of entropy plotted against NZ as a percentage of sample size, for different sample sizes
NS = [100, 200, 500, 1000, 2000, 5000].

Interestingly, comparing Figure 9d (Bimodal Gaussian Mixture) with Figure 4a (Unimodal
Gaussian), we see that QS actually converges more rapidly for the Bimodal density. One
possible explanation is that the Bimodal density is in some sense “closer” in shape to a
Uniform density, for which the piecewise constant representation is a better approximation.

8. Experimental Comparison with the Kernel Density Method

Figures 10 and 11 show performance of the KD method on the same four distributions
(Gaussian, Exponential, Log-Normal and Bimodal). We used the KD method developed by [21]
and the code provided at webee.technion.ac.il/~yoav/research/blind-separation.html (ac-
cessed on 13 May 2021), which provides an efficient implementation of the non-parametric
Parzen-window density estimator [4,22]. To align well with the known (exponential-type)
shapes of the four example distributions, we used a Gaussian kernel, so that the corre-
sponding hyper-parameter to be tuned/selected is the standard deviation σK of each kernel.
Consistent with our implementation of QS and BC, the code specifies the support interval

webee.technion.ac.il/~yoav/research/blind-separation.html


Entropy 2021, 23, 740 17 of 22

by setting xmin = min{S} and xmax = max{S}. As discussed below, the results clearly
reinforce the findings of [17] that KD performance can depend strongly on distribution
shape and sample size.

According to Parzen-window theory, the appropriate choice for the kernel standard
deviation σK is a function of the sample size NS such that σK = K/

√
NS, where K is some

unknown constant; this makes sense because for smaller sample sizes the data points are
spaced further apart and we require more smoothing (larger σK), while for larger sample
sizes the data points are more closely spaced and we require less smoothing (smaller
σK). Accordingly, Figure 10 shows the expected percentage estimation error (bias) on
the y-axis plotted as a function of K = σK·

√
NS for different sample sizes (averaged over

500 repetitions) for each of the four distributions. The yellow marker symbols indicate
where each curve crosses the zero-bias line. Clearly, in practice, the optimal value for the
KD hyper-parameter K is not constant and varies as a function of both sample size and
distributional form.

Figure 10. Plot showing how expected percentage error in the KD-based estimate of Entropy derived from random samples,
varies as a function of K = σk·

√
NS when using a Gaussian kernel. Results are averaged over 500 trials obtained by drawing

sample sets of size NS from the theoretical pdf, where xmin and xmax are set to be the smallest and largest data values in the
particular sample. Results are shown for different sample sizes NS = [100, 200, 500, 1000, 2000, 5000], for the (a) Gaussian,
(b), Exponential, (c) Log-Normal, and (d) Bimodal densities. When the kernel standard deviation σk (and hence K) is small the
estimation bias is negative (underestimation) but rapidly increases to cross zero and become positive (overestimation) as the
kernel standard deviation is increased. The location of the crossing point (corresponding to optimal value for K (and hence
σk) varies with sample size and shape of the pdf.
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This variation is illustrated clearly by Figure 11 where the optimal K is plotted as
a function of sample size NS for each of the four distributions. So, as with the BC (but
in contrast with the QS), practical implementation of KD requires both selection of an
appropriate kernel type and tuning to determine the optimal value of the kernel hyper-
parameter (either K or σK); this can be done by optimizing σK to maximize the Likelihood of
the data. Note that for smaller sample sizes the entropy estimate can be very sensitive to the
choice of this hyper-parameter, as evidenced by the steeper slopes of the curves in Figure 10.
In contrast, with QS no kernel-type needs to be selected and no hyper-parameter tuning
seems to be necessary, regardless of distribution shape and sample size, and sensitivity
of the entropy estimate to precise choice of the number of quantiles NZ is relatively small
even for smaller sample sizes (see Figure 4).

Figure 11. Plot showing how the optimal value of the KD hyper-parameter K = σk·
√

NS varies as
a function of sample size NS and pdf type when using a Gaussian kernel. In disagreement with
Parzen-window theory, the optimal value for K does not remain approximately constant as the
sample size NS is varied. Further, the value of K varies significantly with shape of the underlying pdf.

9. Discussion and Conclusions

The QS approach provides a relatively simple method for obtaining accurate estimates
of entropy from data samples, along with an idea of the estimation-uncertainty associated
with sampling variability. It appears to have an advantage over BC and KD since the
most important hyper-parameter to be specified, the number of quantiles NZ, does not
need to be tuned and can apparently be set to a fixed fraction (∼25–35%) of the sample
size, regardless of pdf shape or sample size. In contrast, for BC the optimal number of
bins NBin varies with pdf shape and sample size and, since the underlying pdf shape is
usually not known beforehand, it can be difficult to come up with a general rule for how to
accurately specify this value. Similarly, for KD, without prior knowledge of the underlying
pdf shape (and especially when the pdf may be non-smooth) it can be difficult to know
what kernel-type and hyper-parameter settings to use.

Besides being simpler to apply, the QS approach appears to provide a more accurate
estimate of the underlying data generating pdf than either BC or KD, particularly for
smaller sample sizes. This is illustrated clearly by Figure 12 where the expected percent
entropy estimation error is plotted as a function of sample size NS for each of the three
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methods. For QS, the fractional number of bins was fixed at α = 25% regardless of pdf
form or sample size; in other words, no hyperparameter tuning was performed. For each
of the other methods, the corresponding hyperparameter (kernel standard deviation σK
for KD, and bin width ∆ for BC) was optimized for each random sample, by finding the
value that maximizes the Likelihood of the sample. As can clearly be seen, the QS-based
estimates remain relatively unbiased even for samples as small as 100 data points, whereas
the KD- and BC-based estimates tend to get progressively worse (negatively biased) as
sample sizes are decreased. Overall, QS is both easier to apply (no hyper-parameter tuning
required) and likely to be more accurate than BC or KD when applied to data from an
unknown distributional form, particularly since the the piecewise linear interpolation
between CDF points makes it applicable to pdfs of any arbitrary shape, including those
with sharp discontinuities in slope and/or magnitude. A follow-up study investigating the
accuracy of these methods when faced with data drawn from complex, arbitrarily shaped,
pdfs is currently in progress and will be reported in due course.

Figure 12. Plots showing expected percent error in the QS- (blue), KD- (purple) and BC-based (green)
estimates of entropy derived from random samples, as a function of sample size NS for the (a)
Gaussian, (b), Log-Normal, (c) Exponential, and (d) Bimodal densities; box plots are shown side by side
to improve legibility. Results are averaged over 500 trials obtained by drawing sample sets of size NS

from the theoretical pdf, where xmin and xmax are set to be the smallest and largest data values in
the particular sample. For QS, the fractional number of bins was fixed at α = 25% regardless of pdf
form or sample size. For KD and BC, the corresponding hyperparameter (kernel standard deviation
σK and bin width ∆ respectively) was optimized for each random sample by finding the value that
maximizes the Likelihood of the sample. Results show clearly that QS-based estimates are relatively
unbiased, even for small sample sizes, whereas KD- and BC-based estimates can have significant
negative bias when sample sizes are small.
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The fact that QS differs from BC in one very important way may help to explain the
properties noted above. Whereas in BC we choose the “bin” size and locations, and then
compute the “probability mass” estimates for each bin from the data, in QS we instead
choose the “probability mass” size (by specifying the number of quantiles) and then compute
the “bin” sizes and locations (to conform to the spacings between quantiles) from the data.
In doing so, BC uses only the samples falling within a particular bin to compute each
probability mass estimate, which value can (in principle) be highly sensitive to sampling
variability unless the number of samples (in each bin) is sufficiently large. In contrast,
QS uses a potentially large number of samples from the data to generate a smoothed
(via subsampling and averaging) estimate of the position of each quantile. As shown in
Figure 2, the estimation bias and uncertainty are small for most of the quantiles and may
only be significant near the extreme tails of the density, and for smaller sample sizes. In
principle, therefore, with its focus on estimating quantiles rather than probability masses,
the QS method seems to provide a more efficient use of the information in the data, and
thereby a more robust approximation of the shape of the pdf.

In this paper, we have used a simple, perhaps naïve, way of estimating the locations
of the quantiles. Future work could investigate more sophisticated methods where the
bias associated with extreme quantiles is accounted for and corrected. These include
both Kernel and non-parametric methods. The simplest non-parametric methods are the
empirical quantile estimator based on a single order statistic, or the extension based on two
consecutive order statistics [23], for which the variance can be large. Quantile estimators
based on L-statistics have been explored as a way to reduce estimation variance [24–26], and
include Kernel quantile estimators [27–31]. However, performance of the latter can be very
sensitive to the choice of bandwidth. More recently, quantile L-estimators intended to be
efficient at small sample sizes for estimating quantiles in the tails of a distribution have also
been proposed [32,33]. Finally, quantile estimators based on Bernstein polynomials [34,35]
and importance sampling (see [36] and references therein) have been also investigated.

Note that the small-sample efficiency of the QS method may be affected by the fact
that the entropy fractions associated with the extreme upper and lower end “bins” (quantile
spacings) can be quite large when a small number of quantiles is used (see Figure 3). Our
implementation of QS seems to successfully compensate for lack of exact knowledge of
z0 and zNZ by using as empirical estimates the values xmin and xmax in the data sample.
Intuitively, one would expect that wider “bins” could be used in regions where the slopes
of the entropy fraction curves are flatter (e.g., the center of the Gaussian density), and
narrower “bins” in the tails (more like the BC method). Taken to its logical conclusion,
an ideal approach might be to use “bin” locations and widths such that the cumulative
value of −ln(p)·p for any given pdf is subdivided into equal intervals (i.e., equal fractional
entropy spacings) such that each bin then contributes approximately the same amount
to the summation in Equation (9). To achieve this, the challenge is to estimate the edge
locations of these “bins” (analogous to locations of the quantiles) from the sample data; we
leave the possibility of such an approach for future investigation.
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