428 research outputs found

    Towards Automated Benchmarking of Atomistic Forcefields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive

    Full text link
    Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the forcefield employed. While experimental measurements of fundamental physical properties offer a straightforward approach for evaluating forcefield quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark datasets of physical properties from non-machine-readable sources require substantial human effort and is prone to accumulation of human errors, hindering the development of reproducible benchmarks of forcefield accuracy. Here, we examine the feasibility of benchmarking atomistic forcefields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating format. As a proof of concept, we present a detailed benchmark of the generalized Amber small molecule forcefield (GAFF) using the AM1-BCC charge model against measurements (specifically bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive, and discuss the extent of available data. The results of this benchmark highlight a general problem with fixed-charge forcefields in the representation low dielectric environments such as those seen in binding cavities or biological membranes

    The antigen presenting potential of Vγ9Vδ2 T-cells during Plasmodium falciparum blood-stage infection.

    Get PDF
    During Plasmodium falciparum infections, erythrocyte-stage parasites inhibit dendritic cell maturation and function; compromising development of effective anti-malarial adaptive immunity. Human Vγ9Vδ2 T-cells can act in vitro as APCs and induce αβ T-cell activation. However, the relevance of this activity in pathophysiological contexts in vivo has remained elusive. Since Vγ9Vδ2 T-cells are activated during the early immune response against P.falciparum infection, we investigated whether they could contribute to the instruction of adaptive immune responses toward malaria parasites. In P.falciparum-infected patients,Vγ9Vδ2 T-cells presented an increased surface expression of APC-associated markers HLA-DR and CD86. In response to infected red blood cells in vitro, Vγ9Vδ2 T-cells readily up-regulated surface expression of HLA-DR, HLA-ABC, CD40, CD80, CD83 and CD86, induced naive αβ T-cell responses, and cross-presented soluble prototypical protein to antigen-specific CD8+ T-cells. Our findings indicate that P. falciparum parasites induce genuine APC properties in Vγ9Vδ2 T-cells and qualify this subset as an alternative professional APC in malaria patients, which could be harnessed for therapeutic interventions and vaccine design

    Supplementary guidance: listening to staff: Autumn 2017

    Get PDF
    Kinases play a critical role in cellular signaling and are dysregulated in a number of diseases, such as cancer, diabetes, and neurodegeneration. Therapeutics targeting kinases currently account for roughly 50% of cancer drug discovery efforts. The ability to explore human kinase biochemistry and biophysics in the laboratory is essential to designing selective inhibitors and studying drug resistance. Bacterial expression systems are superior to insect or mammalian cells in terms of simplicity and cost effectiveness but have historically struggled with human kinase expression. Following the discovery that phosphatase coexpression produced high yields of Src and Abl kinase domains in bacteria, we have generated a library of 52 His-tagged human kinase domain constructs that express above 2 μg/mL of culture in an automated bacterial expression system utilizing phosphatase coexpression (YopH for Tyr kinases and lambda for Ser/Thr kinases). Here, we report a structural bioinformatics approach to identifying kinase domain constructs previously expressed in bacteria and likely to express well in our protocol, experiments demonstrating our simple construct selection strategy selects constructs with good expression yields in a test of 84 potential kinase domain boundaries for Abl, and yields from a high-throughput expression screen of 96 human kinase constructs. Using a fluorescence-based thermostability assay and a fluorescent ATP-competitive inhibitor, we show that the highest-expressing kinases are folded and have well-formed ATP binding sites. We also demonstrate that these constructs can enable characterization of clinical mutations by expressing a panel of 48 Src and 46 Abl mutations. The wild-type kinase construct library is available publicly via Addgene

    Anticipating and Adapting to the Future Impacts of Climate Change on the Health, Security and Welfare of Low Elevation Coastal Zone (LECZ) Communities in Southeastern USA

    Get PDF
    Low elevation coastal zones (LECZ) are extensive throughout the southeastern United States. LECZ communities are threatened by inundation from sea level rise, storm surge, wetland degradation, land subsidence, and hydrological flooding. Communication among scientists, stakeholders, policy makers and minority and poor residents must improve. We must predict processes spanning the ecological, physical, social, and health sciences. Communities need to address linkages of (1) human and socioeconomic vulnerabilities; (2) public health and safety; (3) economic concerns; (4) land loss; (5) wetland threats; and (6) coastal inundation. Essential capabilities must include a network to assemble and distribute data and model code to assess risk and its causes, support adaptive management, and improve the resiliency of communities. Better communication of information and understanding among residents and officials is essential. Here we review recent background literature on these matters and offer recommendations for integrating natural and social sciences. We advocate for a cyber-network of scientists, modelers, engineers, educators, and stakeholders from academia, federal state and local agencies, non-governmental organizations, residents, and the private sector. Our vision is to enhance future resilience of LECZ communities by offering approaches to mitigate hazards to human health, safety and welfare and reduce impacts to coastal residents and industries

    Acute exacerbation of idiopathic pulmonary fibrosis: International survey and call for harmonisation.

    Get PDF
    AIM Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is an often deadly complication of IPF. No focused international guidelines for the management of AE-IPF exist. The aim of this international survey was to assess the global variability in prevention, diagnostic and treatment strategies for AE-IPF. MATERIAL AND METHODS Pulmonologists with ILD expertise were invited to participate in a survey designed by an international expert panel. RESULTS 509 pulmonologists from 66 countries responded. Significant geographical variability in approaches to manage AE-IPF was found. Common preventive measures included antifibrotic drugs and vaccination. Diagnostic differences were most pronounced regarding use of KL-6 and viral testing, while HRCT, BNP and D-Dimer are generally applied. High dose steroids are widely administered (94%); the use of other immunosuppressant and treatment strategies is highly variable. Very few (4%) responders never use immunosuppression. Antifibrotic treatments are initiated during AE-IPF by 67%. Invasive ventilation or extracorporeal membrane oxygenation are mainly used as a bridge to transplantation. Most physicians educate patients comprehensively on the severity of AE-IPF (82%) and consider palliative care (64%). CONCLUSION Approaches to the prevention, diagnosis and treatment of AE-IPF vary worldwide. Global trials and guidelines to improve the prognosis of AE-IPF are needed

    Hazard characterization of Alternaria toxins to identify data gaps and improve risk assessment for human health

    Get PDF
    Fungi of the genus Alternaria are ubiquitous plant pathogens and saprophytes which are able to grow under varying temperature and moisture conditions as well as on a large range of substrates. A spectrum of structurally diverse secondary metabolites with toxic potential has been identified, but occurrence and relative proportion of the different metabolites in complex mixtures depend on strain, substrate, and growth conditions. This review compiles the available knowledge on hazard identification and characterization of Alternaria toxins. Alternariol (AOH), its monomethylether AME and the perylene quinones altertoxin I (ATX-I), ATX-II, ATX-III, alterperylenol (ALP), and stemphyltoxin III (STTX-III) showed in vitro genotoxic and mutagenic properties. Of all identified Alternaria toxins, the epoxide-bearing analogs ATX-II, ATX-III, and STTX-III show the highest cytotoxic, genotoxic, and mutagenic potential in vitro. Under hormone-sensitive conditions, AOH and AME act as moderate xenoestrogens, but in silico modeling predicts further Alternaria toxins as potential estrogenic factors. Recent studies indicate also an immunosuppressive role of AOH and ATX-II; however, no data are available for the majority of Alternaria toxins. Overall, hazard characterization of Alternaria toxins focused, so far, primarily on the commercially available dibenzo-α-pyrones AOH and AME and tenuazonic acid (TeA). Limited data sets are available for altersetin (ALS), altenuene (ALT), and tentoxin (TEN). The occurrence and toxicological relevance of perylene quinone-based Alternaria toxins still remain to be fully elucidated. We identified data gaps on hazard identification and characterization crucial to improve risk assessment of Alternaria mycotoxins for consumers and occupationally exposed workers.The European Partnership for the Assessment of Risks from Chemicals has received funding from the European Union’s Horizon Europe research and innovation program under Grant Agreement No 101057014 and has received co-funding of the authors’ institutions. Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the Health and Digital Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.info:eu-repo/semantics/publishedVersio

    Photochemically produced SO2 in the atmosphere of WASP-39b

    Get PDF
    Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations

    Photochemically-produced SO2_2 in the atmosphere of WASP-39b

    Get PDF
    Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability. However, no unambiguous photochemical products have been detected in exoplanet atmospheres to date. Recent observations from the JWST Transiting Exoplanet Early Release Science Program found a spectral absorption feature at 4.05 μ\mum arising from SO2_2 in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ_J) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of \sim1100 K. The most plausible way of generating SO2_2 in such an atmosphere is through photochemical processes. Here we show that the SO2_2 distribution computed by a suite of photochemical models robustly explains the 4.05 μ\mum spectral feature identified by JWST transmission observations with NIRSpec PRISM (2.7σ\sigma) and G395H (4.5σ\sigma). SO2_2 is produced by successive oxidation of sulphur radicals freed when hydrogen sulphide (H2_2S) is destroyed. The sensitivity of the SO2_2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of \sim10×\times solar. We further point out that SO2_2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.Comment: 39 pages, 14 figures, accepted to be published in Natur
    corecore