160 research outputs found

    Assessing the accuracy of intracameral phenylephrine preparation in cataract surgery

    Get PDF
    Purpose: Unpreserved phenylephrine is often used as an off-licence intracameral surgical adjunct during cataract surgery to assist with pupil dilation and/or stabilise the iris in floppy iris syndrome. It can be delivered as a neat 0.2 ml bolus of either 2.5 or 10% strength, or in a range of ad-hoc dilutions. We wished to assess the accuracy of intracameral phenylephrine preparation in clinical practice. Methods: Phenylephrine 0.2 ml was analysed both neat (2.5 and 10%) and in diluted form (ratio of 1:1 and 1:3). Samples were analysed using the validated spectrophotometric method. Results: A total of 36 samples were analysed. The standard curve showed linearity for phenylephrine (R2 = 0.99). Wide variability was observed across all dilution groups. There was evidence of significant differences in the percentage deviations from intended results between dilutions (p < 0.001). Mean percentage deviation for 1:3 dilution was significantly greater than neat (p = 0.003) and 1:1 dilution (p = 0.001). There was no evidence of a significant difference between 1:1 and neat (p = 0.827). Conclusions: Current ad-hoc dilution methods used to prepare intracameral phenylephrine are inaccurate and highly variable. Small volume 1 ml syringes should not be used for mixing or dilution of drug. Commercial intracameral phenylephrine products would address dosage concerns and could improve surgical outcomes in cases of poor pupil dilation and/or floppy iris syndrome

    Effects of controlled diesel exhaust exposure on apoptosis and proliferation markers in bronchial epithelium – an in vivo bronchoscopy study on asthmatics, rhinitics and healthy subjects

    No full text
    BackgroundEpidemiological evidence demonstrates that exposure to traffic-derived pollution worsens respiratory symptoms in asthmatics, but controlled human exposure studies have failed to provide a mechanism for this effect. Here we investigated whether diesel exhaust (DE) would induce apoptosis or proliferation in the bronchial epithelium in vivo and thus contribute to respiratory symptoms.MethodsModerate (n?=?16) and mild (n?=?16) asthmatics, atopic non-asthmatic controls (rhinitics) (n?=?13) and healthy controls (n?=?21) were exposed to filtered air or DE (100 ?g/m 3 ) for 2 h, on two separate occasions. Bronchial biopsies were taken 18 h post-exposure and immunohistochemically analysed for pro-apoptotic and anti-apoptotic proteins (Bad, Bak, p85 PARP, Fas, Bcl-2) and a marker of proliferation (Ki67). Positive staining was assessed within the epithelium using computerized image analysis.ResultsNo evidence of epithelial apoptosis or proliferation was observed in healthy, allergic or asthmatic airways following DE challenge.ConclusionIn the present study, we investigated whether DE exposure would affect markers of proliferation and apoptosis in the bronchial epithelium of asthmatics, rhinitics and healthy controls, providing a mechanistic basis for the reported increased airway sensitivity in asthmatics to air pollutants. In this first in vivo exposure investigation, we found no evidence of diesel exhaust-induced effects on these processes in the subject groups investigated

    Photocatalytic Decomposition of Formic Acid on Mo2C-Containing Catalyst

    Get PDF
    Soluble components in the peripheral blood from experimental exposure of 14 healthy subjects to filtered air and wood smoke. Samples were collected before (pre), at 24 h and 44 h after exposure, to air and wood smoke. Data are given as medians with interquartile range. (DOCX 62 kb

    Mapping atopic dermatitis and anti–IL-22 response signatures to type 2–low severe neutrophilic asthma

    Get PDF
    Background: Transcriptomic changes in patients who respond clinically to biological therapies may identify responses in other tissues or diseases. Objective: We sought to determine whether a disease signature identified in atopic dermatitis (AD) is seen in adults with severe asthma and whether a transcriptomic signature for patients with AD who respond clinically to anti–IL-22 (fezakinumab [FZ]) is enriched in severe asthma. Methods: An AD disease signature was obtained from analysis of differentially expressed genes between AD lesional and nonlesional skin biopsies. Differentially expressed genes from lesional skin from therapeutic superresponders before and after 12 weeks of FZ treatment defined the FZ-response signature. Gene set variation analysis was used to produce enrichment scores of AD and FZ-response signatures in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes asthma cohort. Results: The AD disease signature (112 upregulated genes) encompassing inflammatory, T-cell, TH2, and TH17/TH22 pathways was enriched in the blood and sputum of patients with asthma with increasing severity. Patients with asthma with sputum neutrophilia and mixed granulocyte phenotypes were the most enriched (P < .05). The FZ-response signature (296 downregulated genes) was enriched in asthmatic blood (P < .05) and particularly in neutrophilic and mixed granulocytic sputum (P < .05). These data were confirmed in sputum of the Airway Disease Endotyping for Personalized Therapeutics cohort. IL-22 mRNA across tissues did not correlate with FZ-response enrichment scores, but this response signature correlated with TH22/IL-22 pathways. Conclusions: The FZ-response signature in AD identifies severe neutrophilic asthmatic patients as potential responders to FZ therapy. This approach will help identify patients for future asthma clinical trials of drugs used successfully in other chronic diseases

    Development of machine learning models to predict posterior capsule rupture based on the EUREQUO registry

    Get PDF
    Purpose: To evaluate the performance of different probabilistic classifiers to predict posterior capsule rupture (PCR) prior to cataract surgery. Methods: Three probabilistic classifiers were constructed to estimate the probability of PCR: a Bayesian network (BN), logistic regression (LR) model, and multi‐layer perceptron (MLP) network. The classifiers were trained on a sample of 2 853 376 surgeries reported to the European Registry of Quality Outcomes for Cataract and Refractive Surgery (EUREQUO) between 2008 and 2018. The performance of the classifiers was evaluated based on the area under the precision‐recall curve (AUPRC) and compared to existing scoring models in the literature. Furthermore, direct risk factors for PCR were identified by analysing the independence structure of the BN. Results: The MLP network predicted PCR overall the best (AUPRC 13.1 ± 0.41%), followed by the BN (AUPRC 8.05 ± 0.39%) and the LR model (AUPRC 7.31 ± 0.15%). Direct risk factors for PCR include preoperative best‐corrected visual acuity (BCVA), year of surgery, operation type, anaesthesia, target refraction, other ocular comorbidities, white cataract, and corneal opacities. Conclusions: Our results suggest that the MLP network performs better than existing scoring models in the literature, despite a relatively low precision at high recall. Consequently, implementing the MLP network in clinical practice can potentially decrease the PCR rate

    Protective Effect of Curcumin on Pulmonary and Cardiovascular Effects Induced by Repeated Exposure to Diesel Exhaust Particles in Mice

    Get PDF
    Particulate air pollution has been associated with increased risk of cardiopulmonary diseases. However, the underlying mechanisms are not fully understood. We have previously demonstrated that single dose exposure to diesel exhaust particle (DEP) causes lung inflammation and peripheral thrombotic events. Here, we exposed mice with repeated doses of DEP (15µg/animal) every 2nd day for 6 days (a total of 4 exposures), and measured several cardiopulmonary endpoints 48 h after the end of the treatments. Moreover, the potential protective effect of curcumin (the yellow pigment isolated from turmeric) on DEP-induced cardiopulmonary toxicity was assessed. DEP exposure increased macrophage and neutrophil numbers, tumor necrosis factor α (TNF α) in the bronchoalveolar lavage (BAL) fluid, and enhanced airway resistance to methacoline measured invasively using Flexivent. DEP also significantly increased plasma C-reactive protein (CRP) and TNF α concentrations, systolic blood pressure (SBP) as well as the pial arteriolar thrombosis. It also significantly enhanced the plasma D-dimer and plasminogen activator inhibitor-1 (PAI-1). Pretreatment with curcumin by oral gavage (45 mg/kg) 1h before exposure to DEP significantly prevented the influx of inflammatory cells and the increase of TNF α in BAL, and the increased airway resistance caused by DEP. Likewise, curcumin prevented the increase of SBP, CRP, TNF α, D-dimer and PAI-1. The thrombosis was partially but significantly mitigated. In conclusion, repeated exposure to DEP induced lung and systemic inflammation characterized by TNFα release, increased SBP, and accelerated coagulation. Our findings indicate that curcumin is a potent anti-inflammatory agent that prevents the release of TNFα and protects against the pulmonary and cardiovascular effects of DEP

    Altered Antioxidant-Oxidant Status in the Aqueous Humor and Peripheral Blood of Patients with Retinitis Pigmentosa

    Get PDF
    Retinitis Pigmentosa is a common form of hereditary retinal degeneration constituting the largest Mendelian genetic cause of blindness in the developed world. It has been widely suggested that oxidative stress possibly contributes to its pathogenesis. We measured the levels of total antioxidant capacity, free nitrotyrosine, thiobarbituric acid reactive substances (TBARS) formation, extracellular superoxide dismutase (SOD3) activity, protein, metabolites of the nitric oxide/cyclic GMP pathway, heme oxygenase-I and inducible nitric oxide synthase expression in aqueous humor or/and peripheral blood from fifty-six patients with retinitis pigmentosa and sixty subjects without systemic or ocular oxidative stress-related disease. Multivariate analysis of covariance revealed that retinitis pigmentosa alters ocular antioxidant defence machinery and the redox status in blood. Patients with retinitis pigmentosa present low total antioxidant capacity including reduced SOD3 activity and protein concentration in aqueous humor. Patients also show reduced SOD3 activity, increased TBARS formation and upregulation of the nitric oxide/cyclic GMP pathway in peripheral blood. Together these findings confirmed the hypothesis that patients with retinitis pigmentosa present reduced ocular antioxidant status. Moreover, these patients show changes in some oxidative-nitrosative markers in the peripheral blood. Further studies are needed to clarify the relationship between these peripheral markers and retinitis pigmentosa

    Stratification of asthma phenotypes by airway proteomic signatures

    Get PDF
    © 2019 Background: Stratification by eosinophil and neutrophil counts increases our understanding of asthma and helps target therapy, but there is room for improvement in our accuracy in prediction of treatment responses and a need for better understanding of the underlying mechanisms. Objective: We sought to identify molecular subphenotypes of asthma defined by proteomic signatures for improved stratification. Methods: Unbiased label-free quantitative mass spectrometry and topological data analysis were used to analyze the proteomes of sputum supernatants from 246 participants (206 asthmatic patients) as a novel means of asthma stratification. Microarray analysis of sputum cells provided transcriptomics data additionally to inform on underlying mechanisms. Results: Analysis of the sputum proteome resulted in 10 clusters (ie, proteotypes) based on similarity in proteomic features, representing discrete molecular subphenotypes of asthma. Overlaying granulocyte counts onto the 10 clusters as metadata further defined 3 of these as highly eosinophilic, 3 as highly neutrophilic, and 2 as highly atopic with relatively low granulocytic inflammation. For each of these 3 phenotypes, logistic regression analysis identified candidate protein biomarkers, and matched transcriptomic data pointed to differentially activated underlying mechanisms. Conclusion: This study provides further stratification of asthma currently classified based on quantification of granulocytic inflammation and provided additional insight into their underlying mechanisms, which could become targets for novel therapies
    corecore