84 research outputs found

    multicentre analysis, I-MOVE-COVID-19 and ECDC networks, July to August 2021

    Get PDF
    Funding Information: This project received funding from the European Centre for Disease Prevention and Control (ECDC) under the contract ECD.11486. Funding Information: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101003673. Publisher Copyright: © 2022 European Centre for Disease Prevention and Control (ECDC). All rights reserved.Introduction: In July and August 2021, the SARS-CoV-2 Delta variant dominated in Europe. Aim: Using a multicentre test-negative study, we measured COVID-19 vaccine effectiveness (VE) against symptomatic infection. Methods: Individuals with COVID-19 or acute respiratory symptoms at primary care/community level in 10 European countries were tested for SARS-CoV-2. We measured complete primary course overall VE by vaccine brand and by time since vaccination. Results: Overall VE was 74% (95% CI: 69-79), 76% (95% CI: 71-80), 63% (95% CI: 48-75) and 63% (95% CI: 16-83) among those aged 30-44, 45-59, 60-74 and ≥ 75 years, respectively. VE among those aged 30-59 years was 78% (95% CI: 75-81), 66% (95% CI: 58-73), 91% (95% CI: 87-94) and 52% (95% CI: 40-61), for Comirnaty, Vaxzevria, Spikevax and COVID-19 Vaccine Janssen, respectively. VE among people 60 years and older was 67% (95% CI: 52-77), 65% (95% CI: 48-76) and 83% (95% CI: 64-92) for Comirnaty, Vaxzevria and Spikevax, respectively. Comirnaty VE among those aged 30-59 years was 87% (95% CI: 83-89) at 14-29 days and 65% (95% CI: 56-71%) at ≥ 90 days between vaccination and onset of symptoms. Conclusions: VE against symptomatic infection with the SARS-CoV-2 Delta variant varied among brands, ranging from 52% to 91%. While some waning of the vaccine effect may be present (sample size limited this analysis to only Comirnaty), protection was 65% at 90 days or more between vaccination and onset.publishersversionpublishe

    Emergence and spread of SARS-CoV-2 lineage B.1.620 with variant of concern-like mutations and deletions.

    Get PDF
    Distinct SARS-CoV-2 lineages, discovered through various genomic surveillance initiatives, have emerged during the pandemic following unprecedented reductions in worldwide human mobility. We here describe a SARS-CoV-2 lineage - designated B.1.620 - discovered in Lithuania and carrying many mutations and deletions in the spike protein shared with widespread variants of concern (VOCs), including E484K, S477N and deletions HV69Δ, Y144Δ, and LLA241/243Δ. As well as documenting the suite of mutations this lineage carries, we also describe its potential to be resistant to neutralising antibodies, accompanying travel histories for a subset of European cases, evidence of local B.1.620 transmission in Europe with a focus on Lithuania, and significance of its prevalence in Central Africa owing to recent genome sequencing efforts there. We make a case for its likely Central African origin using advanced phylogeographic inference methodologies incorporating recorded travel histories of infected travellers

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Virus, épidémies et réseaux de surveillance de la grippe

    No full text
    International audienceInfluenza is an acute contagious respiratory infection caused by influenza viruses, which are unique in their vast genetic variability. By the number of patients affected and the excess of mortality attributable to it, it represents a public health issue. The pandemic risk associated with zoonotic influenza is also a major concern. An active monitoring policy is in place at national and international levels.La grippe est une infection respiratoire aiguë contagieuse due aux virus influenza, dont la particularité réside dans sa grande variabilité génétique. Par le nombre de patients atteints et l’excès de mortalité qui lui est attribuable, elle représente un enjeu de santé publique. Le risque pandémique associé à la grippe zoonotique constitue également une préoccupation majeure. Une politique de surveillance active est en place au niveau national et international

    Detection of human bocavirus-1 in both nasal and stool specimens from children under 5 years old with influenza-like illnesses or diarrhea in Gabon

    No full text
    Abstract Objective Human bocavirus (HBoV) is a viral pathogen which causes respiratory tract diseases and acute gastroenteritis worldwide. This virus mainly affected children under 5 years old. There is little information on HBoV in Gabon. Two first studies was conducted to determine the prevalence of respiratory and enteric viruses in children under 5 years old who visited health centers for influenza-like illness (ILI) or diarrhea in Gabon from March 2010 to June 2011. However, HBoV was not included in the screening. The aim of this retrospective study was to evaluate the prevalence and the HBoV genotype in children under 5 years old with ILI or diarrhea in Gabon. Results A total of 810 nasal swabs and 317 feces samples collected during the two first study were analyzed among which 32 (4.4%) and 7 (2.2%) were positive for HBoV respectively. While there were no significant differences in prevalence between age groups in children with ILI, all children with diarrhea were under 12 months of age. Moreover, 84.4 and 42.8% were diagnosed in co-infections with at least one other respiratory virus, or enteric viruses respectively. Finally, HBoV subtype 1 has been detected in both respiratory and gastrointestinal tracts with very low variability

    RNA-seq accuracy and reproducibility for the mapping and quantification of influenza defective viral genomes

    No full text
    L'article est placé en CC-BY, 1 an après la publication du numéroInternational audienceLike most RNA viruses, influenza viruses generate defective viral genomes (DVGs) with large internal deletions during replication. There is accumulating evidence supporting a biological relevance of such DVGs. However, further understanding of the molecular mechanisms that underlie the production and biological activity of DVGs is conditioned upon the sensitivity and accuracy of detection methods, that is, next-generation sequencing (NGS) technologies and related bioinformatics algorithms. Although many algorithms were developed, their sensitivity and reproducibility were mostly assessed on simulated data. Here, we introduce DG-seq, a time-efficient pipeline for DVG detection and quantification, and a set of biological controls to assess the performance of not only our bioinformatics algorithm but also the upstream NGS steps. Using these tools, we provide the first rigorous comparison of the two commonly used sample processing methods for RNA-seq, with or without a PCR preamplification step. Our data show that preamplification confers a limited advantage in terms of sensitivity and introduces size- but also sequence-dependent biases in DVG quantification, thereby providing a strong rationale to favor preamplification-free methods. We further examine the features of DVGs produced by wild-type and transcription-defective (PA-K635A or PA-R638A) influenza viruses, and show an increased diversity and frequency of DVGs produced by the PA mutants compared to the wild-type virus. Finally, we demonstrate a significant enrichment in DVGs showing direct, A/T-rich sequence repeats at the deletion breakpoint sites. Our findings provide novel insights into the mechanisms of influenza virus DVG production

    Early estimates of 2016/17 seasonal influenza vaccine effectiveness in primary care in France

    No full text
    International audienceBackground: The ongoing 2016/17 influenza epidemic in France is characterized by the circulation of A(H3N2) viruses, known to cause more severe illness among at risk populations.Objectives: The purpose of our study was to provide early influenza vaccine effectiveness (IVE) estimates for the ongoing influenza epidemic in France and compare these estimates over the six post-pandemic IVE.Study design: We used clinical and virological data collected in primary care by the French Sentinelles network. IVE in preventing influenza infection was estimated by the test-negative design method. The screening method was used to estimate IVE in preventing medically-attended influenza-like illness among target groups (<65 year with chronic diseases and ≥65 years) since 2010/11 influenza epidemic.Results: Early IVE estimates in primary care against influenza A(H3N2) were 48% (95% confidence interval (CI): 22 to 66) overall and 39% (95% CI: -17 to 69) among elderly (aged 65 and older). In comparison to the last six epidemics, 2016/17 early IVE in preventing influenza-like illness among target groups showed VE estimates higher to those reported during the 2011/12 and 2014/15 epidemics.Conclusions: The moderate 2016/17 IVE estimates were higher than those estimated during influenza A(H3N2) epidemics with vaccine mismatch
    corecore