221 research outputs found

    The Feedback Control Of Cholesterol Biosynthesis

    Get PDF

    The Accumulation of Tissue Cholesterol and Its Relationship to Bile Acid and Sterol Turnover

    Get PDF
    Normal and hypophysectomized rats were divided into equal homogeneous groups to determine the effect of cholestyramine, corn oil and cholesterol on the excretion of fecal bile acids and sterols. Bile acid turnover rates, pool sizes, and spectrums were studied and compared

    Pharmacological screening using an FXN-EGFP cellular genomic reporter assay for the therapy of Friedreich ataxia

    Get PDF
    Copyright @ 2013 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Friedreich ataxia (FRDA) is an autosomal recessive disorder characterized by neurodegeneration and cardiomyopathy. The presence of a GAA trinucleotide repeat expansion in the first intron of the FXN gene results in the inhibition of gene expression and an insufficiency of the mitochondrial protein frataxin. There is a correlation between expansion length, the amount of residual frataxin and the severity of disease. As the coding sequence is unaltered, pharmacological up-regulation of FXN expression may restore frataxin to therapeutic levels. To facilitate screening of compounds that modulate FXN expression in a physiologically relevant manner, we established a cellular genomic reporter assay consisting of a stable human cell line containing an FXN-EGFP fusion construct, in which the EGFP gene is fused in-frame with the entire normal human FXN gene present on a BAC clone. The cell line was used to establish a fluorometric cellular assay for use in high throughput screening (HTS) procedures. A small chemical library containing FDA-approved compounds and natural extracts was screened and analyzed. Compound hits identified by HTS were further evaluated by flow cytometry in the cellular genomic reporter assay. The effects on FXN mRNA and frataxin protein levels were measured in lymphoblast and fibroblast cell lines derived from individuals with FRDA and in a humanized GAA repeat expansion mouse model of FRDA. Compounds that were established to increase FXN gene expression and frataxin levels included several anti-cancer agents, the iron-chelator deferiprone and the phytoalexin resveratrol.Muscular Dystrophy Association (USA), the National Health and Medical Research Council (Australia), the Friedreich’s Ataxia Research Alliance (USA), the Brockhoff Foundation (Australia), the Friedreich Ataxia Research Association (Australasia), Seek A Miracle (USA) and the Victorian Government’s Operational Infrastructure Support Program

    Biospecimen Reporting for Improved Study Quality

    Full text link
    Human biospecimens are subject to a number of different collection, processing, and storage factors that can significantly alter their molecular composition and consistency. These biospecimen preanalytical factors, in turn, influence experimental outcomes and the ability to reproduce scientific results. Currently, the extent and type of information specific to the biospecimen preanalytical conditions reported in scientific publications and regulatory submissions varies widely. To improve the quality of research utilizing human tissues, it is critical that information regarding the handling of biospecimens be reported in a thorough, accurate, and standardized manner. The Biospecimen Reporting for Improved Study Quality recommendations outlined herein are intended to apply to any study in which human biospecimens are used. The purpose of reporting these details is to supply others, from researchers to regulators, with more consistent and standardized information to better evaluate, interpret, compare, and reproduce the experimental results. The Biospecimen Reporting for Improved Study Quality guidelines are proposed as an important and timely resource tool to strengthen communication and publications around biospecimen-related research and help reassure patient contributors and the advocacy community that the contributions are valued and respected.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90474/1/bio-2E2010-2E0036.pd

    Data Descriptor: Global terrestrial Human Footprint maps for 1993 and 2009

    Full text link
    Remotely-sensed and bottom-up survey information were compiled on eight variables measuring the direct and indirect human pressures on the environment globally in 1993 and 2009. This represents not only the most current information of its type, but also the first temporally-consistent set of Human Footprint maps. Data on human pressures were acquired or developed for: 1) built environments, 2) population density, 3) electric infrastructure, 4) crop lands, 5) pasture lands, 6) roads, 7) railways, and 8) navigable waterways. Pressures were then overlaid to create the standardized Human Footprint maps for all non-Antarctic land areas. A validation analysis using scored pressures from 3114 × 1 km2 random sample plots revealed strong agreement with the Human Footprint maps.We anticipate that the Human Footprint maps will find a range of uses as proxies for human disturbance of natural systems. The updated maps should provide an increased understanding of the human pressures that drive macro-ecological patterns, as well as for tracking environmental change and informing conservation science and application

    Simple rules can guide whether land or ocean based conservation will best benefit marine ecosystems

    Get PDF
    Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment run-off and a downstream coastal marine ecosystem, and contrast the cost-effectiveness of marine and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to one of four alternative conservation actions – protection on land, protection in the ocean, restoration on land, or restoration in the ocean – to maximise the extent of light-dependent marine benthic habitats, across decadal time-scales. We apply the model to a case study seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal time-scales in this system, based on a conservative estimate of the rate at which seagrass can expand into new habitat. The optimal decision will vary in different social-ecological contexts, but some basic information can guide optimal investments to counteract land and ocean based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high, or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is >1.4, with terrestrial restoration typically the most cost effective; and (4) land protection should be prioritised if the catchment is relatively intact, but the rate of vegetation decline is high. These rules-of-thumb illustrate how cost-effective conservation outcomes for connected land-ocean systems can proceed without complex modelling

    Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators

    Get PDF
    A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1α and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu[superscript 230], located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.Glenn Foundation for Medical ResearchEllison Medical FoundationJuvenile Diabetes Research Foundation InternationalUnited Mitochondrial Disease FoundationNational Institutes of Health (U.S.)National Institute of Allergy and Infectious Diseases (U.S.

    Planning for conservation in the Mediterranean Sea : an ecoregional approach

    Get PDF
    Our study demonstrates that setting conservation targets for each Mediterranean ecoregion, can lead to outcomes more comprehensive in the representation of the Mediterranean biodiversity overcoming the great variability in availability of biodiversity and socioeconomic data among countries.peer-reviewe

    Presenilin Is the Molecular Target of Acidic γ-Secretase Modulators in Living Cells

    Get PDF
    The intramembrane-cleaving protease γ-secretase catalyzes the last step in the generation of toxic amyloid-β (Aβ) peptides and is a principal therapeutic target in Alzheimer's disease. Both preclinical and clinical studies have demonstrated that inhibition of γ-secretase is associated with prohibitive side effects due to suppression of Notch processing and signaling. Potentially safer are γ-secretase modulators (GSMs), which are small molecules that selectively lower generation of the highly amyloidogenic Aβ42 peptides but spare Notch processing. GSMs with nanomolar potency and favorable pharmacological properties have been described, but the molecular mechanism of GSMs remains uncertain and both the substrate amyloid precursor protein (APP) and subunits of the γ-secretase complex have been proposed as the molecular target of GSMs. We have generated a potent photo-probe based on an acidic GSM that lowers Aβ42 generation with an IC50 of 290 nM in cellular assays. By combining in vivo photo-crosslinking with affinity purification, we demonstrated that this probe binds the N-terminal fragment of presenilin (PSEN), the catalytic subunit of the γ-secretase complex, in living cells. Labeling was not observed for APP or any of the other γ-secretase subunits. Binding was readily competed by structurally divergent acidic and non-acidic GSMs suggesting a shared mode of action. These findings indicate that potent acidic GSMs target presenilin to modulate the enzymatic activity of the γ-secretase complex

    Resveratrol, by Modulating RNA Processing Factor Levels, Can Influence the Alternative Splicing of Pre-mRNAs

    Get PDF
    Alternative pre-mRNA splicing defects can contribute to, or result from, various diseases, including cancer. Aberrant mRNAs, splicing factors and other RNA processing factors have therefore become targets for new therapeutic interventions. Here we report that the natural polyphenol resveratrol can modulate alternative splicing in a target-specific manner. We transfected minigenes of several alternatively spliceable primary mRNAs into HEK293 cells in the presence or absence of 1, 5, 20 and 50 µM resveratrol and measured exon levels by semi-quantitative PCR after separation by agarose gel electrophoresis. We found that 20 µg/ml and 50 µg/ml of resveratrol affected exon inclusion of SRp20 and SMN2 pre-mRNAs, but not CD44v5 or tau pre-mRNAs. By Western blotting and immunofluorescence we showed that this effect may be due to the ability of resveratrol to change the protein level but not the localization of several RNA processing factors. The processing factors that increased significantly were ASF/SF2, hnRNPA1 and HuR, but resveratrol did not change the levels of RBM4, PTBP1 and U2AF35. By means of siRNA-mediated knockdown we depleted cells of SIRT1, regarded as a major target of resveratrol, and showed that the effect on splicing was not dependent on SIRT1. Our results suggest that resveratrol might be an attractive small molecule to treat diseases in which aberrant splicing has been implicated, and justify more extensive research on the effects of resveratrol on the splicing machinery
    corecore