5 research outputs found

    High-resolution observations in the Western Mediterranean Sea: The REP14-MED experiment

    Get PDF
    The observational part of the REP14-MED experiment was conducted in June 2014 in the Sardo-Balearic Sea west of Sardinia Island (Western Mediterranean Sea). Two research vessels collected high-resolution oceanographic data by means of hydrographic casts, towed systems, and underway measurements. In addition, a vast amount of data was provided by a fleet of 11 gliders, time series were available from moored instruments, and information on Lagrangian flow patterns were obtained from surface drifters and one profiling float. The spatial resolution of the observations encompasses a spectrum over four orders of magnitude from O(101 m) to O(105 m), and the time series from the moored instruments cover a spectral range of five orders from O(101 s) to O(106 s). The objective of this article is to provide an overview of the huge data set which is utilized by various ongoing studies, focusing on (i) sub-mesoscale and mesoscale pattern analyses, (ii) operational forecasting in terms of the development and assessment of sampling strategies, assimilation methods, and model validation, (iii) modeling the variability of the ocean, and (iv) testing of new payloads for gliders

    LonWorks Technology for a Control Network onboard the Phoenix AUV

    Get PDF
    This report has been produced by visiting fifth-year engineering students in support of NPS AUV research

    A New Glider-Compatible Optical Sensor for Dissolved Organic Matter Measurements: Test Case from the NW Mediterranean Sea

    Get PDF
    The MiniFluo-UV is a new glider-compatible optical sensor for measurements of dissolved organic matter (DOM) in natural waters. The working principle, sensor design and challenges faced during the validation phase are reported. The first in situ application of the sensor during three glider deployments in the NW Mediterranean sea (spring, summer, and fall) are also presented. For these campaigns, the two channels of the sensor were adjusted to target Tryptophan-like (excitation/emission wavelengths λEx/λEm: 275/340 nm) and Phenanthrene-like (λEx/λEm: 255/360 nm) fluorescence. These were chosen because they represent fluorophores of interest commonly found in seawater. While Tryptophan (an amino-acid believed to be a by-product of biological activity) is naturally found in the ocean, Phenanthrene (a polycyclic aromatic hydrocarbon) is mainly introduced in the environment by human activities. The addition of these variables to more common physical and biogeochemical glider measurements reveals new features of DOM dynamics in the Mediterranean Sea. For example, the temporal and spatial decoupling between Tryptophan-like and Chl-a fluorescence suggests that the former is not only a marker of phytoplankton activity, but could also give more subtle information on the microbial processes occurring. The identification of a Phenanthrene-like layer just below the pycnocline at all seasons also raises questions on the mechanisms driving its presence in the Mediterranean. Knowing that the role of ocean DOM on atmospheric carbon sequestration is becoming clearer, the high spatio-temporal resolution possible with this new sampling strategy may represents a key step toward our deep understanding of DOM dynamics and its role on the biological pump

    In situ measurements of micronutrient dynamics in open seawater show that complex dissociation rates may limit diatom growth

    No full text
    In this first in situ study of the dynamic availability of phytoplankton micronutrients, a SeaExplorer glider was combined with Diffusive Gradients in Thin Films and deployed in the Mediterranean Sea. On the basis of their labile metal complex pools, we discovered that Fe and Co can be potentially limiting and Cu co-limiting to diatom growth, contrary to the generally accepted view that phosphorus (phosphate) is the growth limiting element in the Mediterranean Sea. For flagellates and picoplankton, phosphorus remains the main element limiting growth. Our in situ measurements showed that organic complexes of Fe and Cu (>98% of total dissolved concentration), dissociate slower than inorganic complexes of Co, Cd and Ni (>99% of total dissolved concentration being free ions and inorganic complexes). This strengthens the potential growth limiting effect of Fe and Cu versus phosphate, which is present as a free ion and, thus, directly available for plankton

    HyMeX-SOP2: The field campaign dedicated to dense water formation in the northwestern Mediterranean

    Get PDF
    International audienceThe HYdrological cycle in the Mediterranean Experiment (HyMeX) Special Observing Period 2 (SOP2, January 27–March 15, 2013) was dedicated to the study of dense water formation in the Gulf of Lion in the northwestern Mediterranean. This paper outlines the deep convection of winter 2012–2013 and the meteorological conditions that produced it. Alternating phases of mixing and restratification are related to periods of high and low heat losses, respectively. High-resolution, realistic, three-dimensional models are essential for assessing the intricacy of buoyancy fluxes, horizontal advection, and convective processes. At the submesoscale, vertical velocities resulting from symmetric instabilities of the density front bounding the convection zone are crucial for ventilating the deep ocean. Finally, concomitant atmospheric and oceanic data extracted from the comprehensive SOP2 data set highlight the rapid, coupled evolution of oceanic and atmospheric boundary layer characteristics during a strong wind event
    corecore