1,630 research outputs found
Transcriptome-wide analysis reveals different categories of response to a standardised immune challenge in a wild rodent
Individuals vary in their immune response and, as a result, some are more susceptible to infectious disease than others. Little is known about the nature of this individual variation in natural populations, or which components of immune pathways are most responsible, but defining this underlying landscape of variation is an essential first step to understanding the drivers of this variation and, ultimately, predicting the outcome of infection. We describe transcriptome-wide variation in response to a standardised immune challenge in wild field voles. We find that markers can be categorised into a limited number of types. For the majority of markers, the response of an individual is dependent on its baseline expression level, with significant enrichment in this category for conventional immune pathways. Another, moderately sized, category contains markers for which the responses of different individuals are also variable but independent of their baseline expression levels. This category lacks any enrichment for conventional immune pathways. We further identify markers which display particularly high individual variability in response, and could be used as markers of immune response in larger studies. Our work shows how a standardised challenge performed on a natural population can reveal the patterns of natural variation in immune response
Mathematical Model of Easter Island Society Collapse
In this paper we consider a mathematical model for the evolution and collapse
of the Easter Island society, starting from the fifth century until the last
period of the society collapse (fifteen century). Based on historical reports,
the available primary sources consisted almost exclusively on the trees. We
describe the inhabitants and the resources as an isolated system and both
considered as dynamic variables. A mathematical analysis about why the
structure of the Easter Island community collapse is performed. In particular,
we analyze the critical values of the fundamental parameters driving the
interaction humans-environment and consequently leading to the collapse. The
technological parameter, quantifying the exploitation of the resources, is
calculated and applied to the case of other extinguished civilization (Cop\'an
Maya) confirming, with a sufficiently precise estimation, the consistency of
the adopted model.Comment: 9 pages, 1 figure, final version published on EuroPhysics Letter
Statistical mechanics and stability of a model eco-system
We study a model ecosystem by means of dynamical techniques from disordered
systems theory. The model describes a set of species subject to competitive
interactions through a background of resources, which they feed upon.
Additionally direct competitive or co-operative interaction between species may
occur through a random coupling matrix. We compute the order parameters of the
system in a fixed point regime, and identify the onset of instability and
compute the phase diagram. We focus on the effects of variability of resources,
direct interaction between species, co-operation pressure and dilution on the
stability and the diversity of the ecosystem. It is shown that resources can be
exploited optimally only in absence of co-operation pressure or direct
interaction between species.Comment: 23 pages, 13 figures; text of paper modified, discussion extended,
references adde
Coexistence and critical behaviour in a lattice model of competing species
In the present paper we study a lattice model of two species competing for
the same resources. Monte Carlo simulations for d=1, 2, and 3 show that when
resources are easily available both species coexist. However, when the supply
of resources is on an intermediate level, the species with slower metabolism
becomes extinct. On the other hand, when resources are scarce it is the species
with faster metabolism that becomes extinct. The range of coexistence of the
two species increases with dimension. We suggest that our model might describe
some aspects of the competition between normal and tumor cells. With such an
interpretation, examples of tumor remission, recurrence and of different
morphologies are presented. In the d=1 and d=2 models, we analyse the nature of
phase transitions: they are either discontinuous or belong to the
directed-percolation universality class, and in some cases they have an active
subcritical phase. In the d=2 case, one of the transitions seems to be
characterized by critical exponents different than directed-percolation ones,
but this transition could be also weakly discontinuous. In the d=3 version,
Monte Carlo simulations are in a good agreement with the solution of the
mean-field approximation. This approximation predicts that oscillatory
behaviour occurs in the present model, but only for d>2. For d>=2, a steady
state depends on the initial configuration in some cases.Comment: 11 pages, 14 figure
Spatial distribution of effort by artisanal fishers: exploring economic factors affecting the Lobster fisheries of the Corn Islands, Nicaragua
Effects of Noise on Ecological Invasion Processes: Bacteriophage-mediated Competition in Bacteria
Pathogen-mediated competition, through which an invasive species carrying and
transmitting a pathogen can be a superior competitor to a more vulnerable
resident species, is one of the principle driving forces influencing
biodiversity in nature. Using an experimental system of bacteriophage-mediated
competition in bacterial populations and a deterministic model, we have shown
in [Joo et al 2005] that the competitive advantage conferred by the phage
depends only on the relative phage pathology and is independent of the initial
phage concentration and other phage and host parameters such as the
infection-causing contact rate, the spontaneous and infection-induced lysis
rates, and the phage burst size. Here we investigate the effects of stochastic
fluctuations on bacterial invasion facilitated by bacteriophage, and examine
the validity of the deterministic approach. We use both numerical and
analytical methods of stochastic processes to identify the source of noise and
assess its magnitude. We show that the conclusions obtained from the
deterministic model are robust against stochastic fluctuations, yet deviations
become prominently large when the phage are more pathological to the invading
bacterial strain.Comment: 39 pages, 7 figure
Transplanting the leafy liverwort Herbertus hutchinsiae : A suitable conservation tool to maintain oceanic-montane liverwort-rich heath?
Thanks to the relevant landowners and managers for permission to carry out the experiments, Chris Preston for helping to obtain the liverwort distribution records and the distribution map, Gordon Rothero and Dave Horsfield for advice on choosing experimental sites and Alex Douglas for statistical advice. Juliane Geyer’s help with fieldwork was greatly appreciated. This study was made possible by a NERC PhD studentship and financial support from the Royal Botanic Garden Edinburgh and Scottish Natural Heritage.Peer reviewedPostprin
A candidate tolerance gene identified in a natural population of field voles (Microtus agrestis)
The animal immune response has hitherto been viewed primarily in the context of resistance only. However, individuals, can also employ a tolerance strategy to maintain good health in the face of on-going infection. To shed light on the genetic and physiological basis of tolerance, we use a natural population of field voles, Microtus agrestis, to search for an association between the expression of the transcription factor Gata3, previously identified as a marker of tolerance in this system, and polymorphism in 84 immune and non-immune genes. Our results show clear evidence for an association between Gata3 expression and polymorphism in the Fcer1a gene, with the explanatory power of this polymorphism being comparable to that of other non-genetic variables previously identified as important predictors of Gata3 expression. We also uncover the possible mechanism behind this association using an existing protein-protein interaction network for the mouse model rodent, Mus musculus, which we validate using our own expression network for M. agrestis. Our results suggest that the polymorphism in question may be working at the transcriptional level, leading to changes in the expression of the Th2-related genes, Tyrosine-protein kinase BTK and Tyrosine-protein kinase TXK, and hence potentially altering the strength of the Th2 response, of which Gata3 is a mediator. We believe our work has implications for both treatment and control of infectious disease
Integrating evolution into ecological modelling: accommodating phenotypic changes in agent based models.
PMCID: PMC3733718This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Evolutionary change is a characteristic of living organisms and forms one of the ways in which species adapt to changed conditions. However, most ecological models do not incorporate this ubiquitous phenomenon. We have developed a model that takes a 'phenotypic gambit' approach and focuses on changes in the frequency of phenotypes (which differ in timing of breeding and fecundity) within a population, using, as an example, seasonal breeding. Fitness per phenotype calculated as the individual's contribution to population growth on an annual basis coincide with the population dynamics per phenotype. Simplified model variants were explored to examine whether the complexity included in the model is justified. Outputs from the spatially implicit model underestimated the number of individuals across all phenotypes. When no phenotype transitions are included (i.e. offspring always inherit their parent's phenotype) numbers of all individuals are always underestimated. We conclude that by using a phenotypic gambit approach evolutionary dynamics can be incorporated into individual based models, and that all that is required is an understanding of the probability of offspring inheriting the parental phenotype
- …
