238 research outputs found

    Factors of economic behavior of population in regional labor market

    Get PDF
    The article is devoted to research into one branch of behavioral economics - peculiarities of economic decision-making by population in the labor market in the context of the Russian regions. Interregional and intraregional migration has been identified as one of the most significant consequences of economic decisions taken by the population. Migration, in turn, is as an important factor in regional economic development resulting in a redistribution of the labor force and affecting regional and local labor markets. It has been assumed that the desire to improve their material well-being forces economically active people to move to more economically developed territories, which allowed the authors to build a methodology for studying the economic behavior of the population, based on an assessment of regional disparities and account of the features of regional labor market. Within the framework of the methodology, the authors have proposed several socio-economic indicators which are based on statistical, analytical and comparative methods and can be used to reveal socio-economic stratification of population in regional aspect. It has been found out that the pattern of economic behavior of labor force in regional markets is determined by differences in the structure of consumer spending in regional context. As a result, the research methodology has enabled the authors to build the typology of the Russian Federation regions rating them according to their attractiveness for employable population.peer-reviewe

    Statistical evaluation of the equivalence scale based on joint accommodation for households of the Russian Federation

    Get PDF
    © 2015, Econjournals. All rights reserved. In this article an evaluation of equivalence scales for households of the Russian Federation is made using the data from “Russian monitoring of the economic situation and public health HSE” for the year 2013. Calculation of equivalence scales is done through a regression estimate of the Engel curve. Identified on the basis of the value of the resulting regression model scale are significantly different from the official scale of the Federal State Statistics Service of the Russian Federation. The authors have shown that it has significant implications for the evaluation of the relative poverty of certain vulnerable groups, in turn, has great significance for the implementation of targeted social policies

    Locking the β\u3csub\u3e3\u3c/sub\u3e Integrin I-like Domain into High and Low Affinity Conformations with Disulfides

    Get PDF
    Although integrin α subunit I domains exist in multiple conformations, it is controversial whether integrin β subunit I-like domains undergo structurally analogous movements of the α7-helix that are linked to affinity for ligand. Disulfide bonds were introduced into the β3 integrin I-like domain to lock its β6-α7 loop and α7-helix in two distinct conformations. Soluble ligand binding, ligand mimetic mAb binding and cell adhesion studies showed that disulfide-bonded receptor αIIbβ3T329C/A347C was locked in a low affinity state, and dithiothreitol treatment restored the capability of being activated to high affinity binding; by contrast, disulfide-bonded αIIbβ3V332C/M335C was locked in a high affinity state. The results suggest that activation of the β subunit I-like domain is analogous to that of the α subunit I domain, i.e. that axial movement in the C-terminal direction of the α7-helix is linked to rearrangement of the I-like domain metal ion-dependent adhesion site into a high affinity conformation

    Docking Server for the Identification of Heparin Binding Sites on Proteins

    Get PDF
    Many proteins of widely differing functionality and structure are capable of binding heparin and heparan sulfate. Since crystallizing protein–heparin complexes for structure determination is generally difficult, computational docking can be a useful approach for understanding specific interactions. Previous studies used programs originally developed for docking small molecules to well-defined pockets, rather than for docking polysaccharides to highly charged shallow crevices that usually bind heparin. We have extended the program PIPER and the automated protein–protein docking server ClusPro to heparin docking. Using a molecular mechanics energy function for scoring and the fast Fourier transform correlation approach, the method generates and evaluates close to a billion poses of a heparin tetrasaccharide probe. The docked structures are clustered using pairwise root-mean-square deviations as the distance measure. It was shown that clustering of heparin molecules close to each other but having different orientations and selecting the clusters with the highest protein–ligand contacts reliably predicts the heparin binding site. In addition, the centers of the five most populated clusters include structures close to the native orientation of the heparin. These structures can provide starting points for further refinement by methods that account for flexibility such as molecular dynamics. The heparin docking method is available as an advanced option of the ClusPro server at http://cluspro.bu.edu/

    A specific interface between integrin transmembrane helices and affinity for ligand

    Get PDF
    Conformational communication across the plasma membrane between the extracellular and intracellular domains of integrins is beginning to be defined by structural work on both domains. However, the role of the α and β subunit transmembrane domains and the nature of signal transmission through these domains have been elusive. Disulfide bond scanning of the exofacial portions of the integrin αIIβ and β 3transmembrane domains reveals a specific heterodimerization interface in the resting receptor. This interface is lost rather than rearranged upon activation of the receptor by cytoplasmic mutations of the a subunit that mimic physiologic inside-out activation, demonstrating a link between activation of the extracellular domain and lateral separation of transmembrane helices. Introduction of disulfide bridges to prevent or reverse separation abolishes the activating effect of cytoplasmic mutations, confirming transmembrane domain separation but not hinging or piston-like motions as the mechanism of transmembrane signaling by integrins

    Ligand-induced epitope masking. Dissociation of integrin α5β1-fibronectin complexes only by monoclonal antibodies with an allosteric mode of action.

    Get PDF
    We previously demonstrated that Arg-Gly-Asp (RGD)-containing ligand-mimetic inhibitors of integrins are unable to dissociate pre-formed integrin-fibronectin complexes (IFCs). These observations suggested that amino acid residues involved in integrin-fibronectin binding become obscured in the ligand-occupied state. Because the epitopes of some function-blocking anti-integrin monoclonal antibodies (mAbs) lie near the ligand-binding pocket, it follows that the epitopes of these mAbs may become shielded in the ligand-occupied state. Here, we tested whether function-blocking mAbs directed against α5β1 can interact with the integrin after it forms a complex with an RGD-containing fragment of fibronectin. We showed that the anti-α5 subunit mAbs JBS5, SNAKA52, 16, and P1D6 failed to disrupt IFCs and hence appeared unable to bind to the ligand-occupied state. In contrast, the allosteric anti-β1 subunit mAbs 13, 4B4, and AIIB2 could dissociate IFCs and therefore were able to interact with the ligand-bound state. However, another class of function-blocking anti-β1 mAbs, exemplified by Lia1/2, could not disrupt IFCs. This second class of mAbs was also distinguished from 13, 4B4, and AIIB2 by their ability to induce homotypic cell aggregation. Although the epitope of Lia1/2 was closely overlapping with those of 13, 4B4, and AIIB2, it appeared to lie closer to the ligand-binding pocket. A new model of the α5β1-fibronectin complex supports our hypothesis that the epitopes of mAbs that fail to bind to the ligand-occupied state lie within, or very close to, the integrin-fibronectin interface. Importantly, our findings imply that the efficacy of some therapeutic anti-integrin mAbs could be limited by epitope masking

    Helicobacter pylori Type IV Secretion Apparatus Exploits β1 Integrin in a Novel RGD-Independent Manner

    Get PDF
    Translocation of the Helicobacter pylori (Hp) cytotoxin-associated gene A (CagA) effector protein via the cag-Type IV Secretion System (T4SS) into host cells is a major risk factor for severe gastric diseases, including gastric cancer. However, the mechanism of translocation and the requirements from the host cell for that event are not well understood. The T4SS consists of inner- and outer membrane-spanning Cag protein complexes and a surface-located pilus. Previously an arginine-glycine-aspartate (RGD)-dependent typical integrin/ligand type interaction of CagL with α5β1 integrin was reported to be essential for CagA translocation. Here we report a specific binding of the T4SS-pilus-associated components CagY and the effector protein CagA to the host cell β1 Integrin receptor. Surface plasmon resonance measurements revealed that CagA binding to α5β1 integrin is rather strong (dissociation constant, KD of 0.15 nM), in comparison to the reported RGD-dependent integrin/fibronectin interaction (KD of 15 nM). For CagA translocation the extracellular part of the β1 integrin subunit is necessary, but not its cytoplasmic domain, nor downstream signalling via integrin-linked kinase. A set of β1 integrin-specific monoclonal antibodies directed against various defined β1 integrin epitopes, such as the PSI, the I-like, the EGF or the β-tail domain, were unable to interfere with CagA translocation. However, a specific antibody (9EG7), which stabilises the open active conformation of β1 integrin heterodimers, efficiently blocked CagA translocation. Our data support a novel model in which the cag-T4SS exploits the β1 integrin receptor by an RGD-independent interaction that involves a conformational switch from the open (extended) to the closed (bent) conformation, to initiate effector protein translocation

    FRET Detection of Lymphocyte Function-Associated Antigen-1 Conformational Extension

    Get PDF
    Lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18, αLβ2-integrin) and its ligands are essential for adhesion between T-cells and antigen-presenting cells, formation of the immunological synapse, and other immune cell interactions. LFA-1 function is regulated through conformational changes that include the modulation of ligand binding affinity and molecular extension. However, the relationship between molecular conformation and function is unclear. Here fluorescence resonance energy transfer (FRET) with new LFA-1-specific fluorescent probes showed that triggering of the pathway used for T-cell activation induced rapid unquenching of the FRET signal consistent with extension of the molecule. Analysis of the FRET quenching at rest revealed an unexpected result that can be interpreted as a previously unknown LFA-1 conformation

    A Novel Dimeric Inhibitor Targeting Beta2GPI in Beta2GPI/Antibody Complexes Implicated in Antiphospholipid Syndrome

    Get PDF
    Background: b2GPI is a major antigen for autoantibodies associated with antiphospholipid syndrome (APS), an autoimmune disease characterized by thrombosis and recurrent pregnancy loss. Only the dimeric form of b2GPI generated by anti-b2GPI antibodies is pathologically important, in contrast to monomeric b2GPI which is abundant in plasma. Principal Findings: We created a dimeric inhibitor, A1-A1, to selectively target b2GPI in b2GPI/antibody complexes. To make this inhibitor, we isolated the first ligand-binding module from ApoER2 (A1) and connected two A1 modules with a flexible linker. A1-A1 interferes with two pathologically important interactions in APS, the binding of b2GPI/antibody complexes with anionic phospholipids and ApoER2. We compared the efficiency of A1-A1 to monomeric A1 for inhibition of the binding of b2GPI/antibody complexes to anionic phospholipids. We tested the inhibition of b2GPI present in human serum, b2GPI purified from human plasma and the individual domain V of b2GPI. We demonstrated that when b2GPI/antibody complexes are formed, A1-A1 is much more effective than A1 in inhibition of the binding of b2GPI to cardiolipin, regardless of the source of b2GPI. Similarly, A1-A1 strongly inhibits the binding of dimerized domain V of b2GPI to cardiolipin compared to the monomeric A1 inhibitor. In the absence of anti-b2GPI antibodies, both A1-A1 and A1 only weakly inhibit the binding of pathologically inactive monomeric b2GPI to cardiolipin. Conclusions: Our results suggest that the approach of using a dimeric inhibitor to block b2GPI in the pathologica
    corecore