1,679 research outputs found

    Apollo PLSS: Environmental control of the smallest manned space vehicle

    Get PDF
    The production of a portable life support system (PLSS) and associated backup equipment for supporting an astronaut working outside of the lunar module (LM) either in space or on the lunar surface is reported. Described are the system, the philosophy behind its design, basic requirements imposed on the system, and some of the evolutionary processes that led to the present configuration

    Radiation testing of composite materials, in situ versus ex situ effects

    Get PDF
    The effect of post irradiation test environments on tensile properties of representative advanced composite materials (T300/5208, T300/934, C6000/P1700) was investigated. Four ply (+ or - 45 deg/+ or - 45 deg) laminate tensile specimens were exposed in vacuum up to a bulk dose of 1 x 10 to the 10th power rads using a mono-energetic fluence of 700 keV electrons from a Van de Graaff accelerator. Post irradiation testing was performed while specimens were being irradiated (in situ data), in vacuum after cessation of irradiation (in vacuo data), and after exposure to air (ex situ data). Room temperature and elevated temperature effects were evaluated. The radiation induced changes to the tensile properties were small. Since the absolute changes in tensile properties were small, the existance of a post irradiation test environment effect was indeterminate

    Critical phenomena in globally coupled excitable elements

    Full text link
    Critical phenomena in globally coupled excitable elements are studied by focusing on a saddle-node bifurcation at the collective level. Critical exponents that characterize divergent fluctuations of interspike intervals near the bifurcation are calculated theoretically. The calculated values appear to be in good agreement with those determined by numerical experiments. The relevance of our results to jamming transitions is also mentioned.Comment: 4 pages, 3 figure

    Insulation bonding test system

    Get PDF
    A method and a system for testing the bonding of foam insulation attached to metal is described. The system involves the use of an impacter which has a calibrated load cell mounted on a plunger and a hammer head mounted on the end of the plunger. When the impacter strikes the insulation at a point to be tested, the load cell measures the force of the impact and the precise time interval during which the hammer head is in contact with the insulation. This information is transmitted as an electrical signal to a load cell amplifier where the signal is conditioned and then transmitted to a fast Fourier transform (FFT) analyzer. The FFT analyzer produces energy spectral density curves which are displayed on a video screen. The termination frequency of the energy spectral density curve may be compared with a predetermined empirical scale to determine whether a igh quality bond, good bond, or debond is present at the point of impact

    A complex pathway for 3 ' processing of the yeast U3 snoRNA

    Get PDF
    Mature U3 snoRNA in yeast is generated from the 3′-extended precursors by endonucleolytic cleavage followed by exonucleolytic trimming. These precursors terminate in poly(U) tracts and are normally stabilised by binding of the yeast La homologue, Lhp1p. We report that normal 3′ processing of U3 requires the nuclear Lsm proteins. On depletion of any of the five essential proteins, Lsm2–5p or Lsm8p, the normal 3′-extended precursors to the U3 snoRNA were lost. Truncated fragments of both mature and pre-U3 accumulated in the Lsm-depleted strains, consistent with substantial RNA degradation. Pre-U3 species were co-precipitated with TAP-tagged Lsm3p, but the association with spliced pre-U3 was lost in strains lacking Lhp1p. The association of Lhp1p with pre-U3 was also reduced on depletion of Lsm3p or Lsm5p, indicating that binding of Lhp1p and the Lsm proteins is interdependent. In contrast, a tagged Sm-protein detectably co-precipitated spliced pre-U3 species only in strains lacking Lhp1p. We propose that the Lsm2–8p complex functions as a chaperone in conjunction with Lhp1p to stabilise pre-U3 RNA species during 3′ processing. The Sm complex may function as a back-up to stabilise 3′ ends that are not protected by Lhp1p

    Beyond the Death of Linear Response: 1/f optimal information transport

    Full text link
    Non-ergodic renewal processes have recently been shown by several authors to be insensitive to periodic perturbations, thereby apparently sanctioning the death of linear response, a building block of nonequilibrium statistical physics. We show that it is possible to go beyond the ``death of linear response" and establish a permanent correlation between an external stimulus and the response of a complex network generating non-ergodic renewal processes, by taking as stimulus a similar non-ergodic process. The ideal condition of 1/f-noise corresponds to a singularity that is expected to be relevant in several experimental conditions.Comment: 4 pages, 2 figures, 1 table, in press on Phys. Rev. Let

    Periodic Neural Activity Induced by Network Complexity

    Get PDF
    We study a model for neural activity on the small-world topology of Watts and Strogatz and on the scale-free topology of Barab\'asi and Albert. We find that the topology of the network connections may spontaneously induce periodic neural activity, contrasting with chaotic neural activities exhibited by regular topologies. Periodic activity exists only for relatively small networks and occurs with higher probability when the rewiring probability is larger. The average length of the periods increases with the square root of the network size.Comment: 4 pages, 5 figure

    Event-driven simulations of a plastic, spiking neural network

    Full text link
    We consider a fully-connected network of leaky integrate-and-fire neurons with spike-timing-dependent plasticity. The plasticity is controlled by a parameter representing the expected weight of a synapse between neurons that are firing randomly with the same mean frequency. For low values of the plasticity parameter, the activities of the system are dominated by noise, while large values of the plasticity parameter lead to self-sustaining activity in the network. We perform event-driven simulations on finite-size networks with up to 128 neurons to find the stationary synaptic weight conformations for different values of the plasticity parameter. In both the low and high activity regimes, the synaptic weights are narrowly distributed around the plasticity parameter value consistent with the predictions of mean-field theory. However, the distribution broadens in the transition region between the two regimes, representing emergent network structures. Using a pseudophysical approach for visualization, we show that the emergent structures are of "path" or "hub" type, observed at different values of the plasticity parameter in the transition region.Comment: 9 pages, 6 figure

    Scaling law for the transient behavior of type-II neuron models

    Full text link
    We study the transient regime of type-II biophysical neuron models and determine the scaling behavior of relaxation times τ\tau near but below the repetitive firing critical current, τ≃C(Ic−I)−Δ\tau \simeq C (I_c-I)^{-\Delta}. For both the Hodgkin-Huxley and Morris-Lecar models we find that the critical exponent is independent of the numerical integration time step and that both systems belong to the same universality class, with Δ=1/2\Delta = 1/2. For appropriately chosen parameters, the FitzHugh-Nagumo model presents the same generic transient behavior, but the critical region is significantly smaller. We propose an experiment that may reveal nontrivial critical exponents in the squid axon.Comment: 6 pages, 9 figures, accepted for publication in Phys. Rev.
    • …
    corecore