417 research outputs found

    Comparing spatial conservation prioritization methods with site versus spatial dependency‐based connectivity

    Get PDF
    Larval dispersal is an important component of marine reserve networks. Two conceptually different approaches to incorporate dispersal connectivity into spatial planning of these networks exist, and it is an open question as to when either is most appropriate. Candidate reserve sites can be selected individually based on local properties of connectivity or on a spatial dependency-based approach of selecting clusters of strongly connected habitat patches. The first acts on individual sites, whereas the second acts on linked pairs of sites. We used a combination of larval dispersal simulations representing different seascapes and case studies of biophysical larval dispersal models in the Coral Triangle region and the province of Southeast Sulawesi, Indonesia, to compare the performance of these 2 methods in the spatial planning software Marxan. We explored the reserve design performance implications of different dispersal distances and patterns based on the equilibrium settlement of larvae in protected and unprotected areas. We further assessed different assumptions about metapopulation contributions from unprotected areas, including the case of 100% depletion and more moderate scenarios. The spatial dependency method was suitable when dispersal was limited, a high proportion of the area of interest was substantially degraded, or the target amount of habitat protected was low. Conversely, when subpopulations were well connected, the 100% depletion was relaxed, or more habitat was protected, protecting individual sites with high scores in metrics of connectivity was a better strategy. Spatial dependency methods generally produced more spatially clustered solutions with more benefits inside than outside reserves compared with site-based methods. Therefore, spatial dependency methods potentially provide better results for ecological persistence objectives over enhancing fisheries objectives, and vice versa. Different spatial prioritization methods of using connectivity are appropriate for different contexts, depending on dispersal characteristics, unprotected area contributions, habitat protection targets, and specific management objectives. Comparación entre los métodos de priorización de la conservación espacial con sitio y la conectividad espacial basada en la dependenci

    Adjoint bulk scalars and supersymmetric unification in the presence of extra dimensions

    Get PDF
    There are several advantages of introducing adjoint superfields at intermediate energies around M=1013M=10^{13} GeV. Such as (i) gauge couplings still unify (ii) neutrino masses and mixings are produced (iii) primordial lepton asymmetry can be produced. We point out that if adjoint scalars have bulk excitations along with gauge bosons whereas fermions and the doublet scalar live on boundary then N=2 supersymmetric beta functions bi~\tilde{b_i} vanish. Thus even if extra dimensions open up at an intermediate scale μ0\mu_0 and all N=2 Yang-Mills fields as well as N=2 matter fields in the adjoint representation propagate in the bulk, still gauge couplings renormalize beyond μ0\mu_0 just like they do in 4-dimensions with adjoint scalars. Consequently unification is achieved in the presence to extra dimensions, mass scales are determined uniquely via Renormalization Group Equations(RGE) and unification scale remains high enough to suppress proton decay. This scenario can be falsified if we get signatures of extra dimensions at low energy.Comment: New references added. This version will appear in Phys. Rev.

    Quality assurance and quality control processes:summary of a metabolomics community questionnaire

    Get PDF
    Introduction The Metabolomics Society Data Quality Task Group (DQTG) developed a questionnaire regarding quality assurance (QA) and quality control (QC) to provide baseline information about current QA and QC practices applied in the international metabolomics community. Objectives The DQTG has a long-term goal of promoting robust QA and QC in the metabolomics community through increased awareness via communication, outreach and education, and through the promotion of best working practices. An assessment of current QA and QC practices will serve as a foundation for future activities and development of appropriate guidelines. Method QA was defined as the set of procedures that are performed in advance of analysis of samples and that are used to improve data quality. QC was defined as the set of activities that a laboratory does during or immediately after analysis that are applied to demonstrate the quality of project data. A questionnaire was developed that included 70 questions covering demographic information, QA approaches and QC approaches and allowed all respondents to answer a subset or all of the questions. Result The DQTG questionnaire received 97 individual responses from 84 institutions in all fields of metabolomics covering NMR, LC-MS, GC-MS, and other analytical technologies. Conclusion There was a vast range of responses concerning the use of QA and QC approaches that indicated the limited availability of suitable training, lack of Standard Operating Procedures (SOPs) to review and make decisions on quality, and limited use of standard reference materials (SRMs) as QC materials. The DQTG QA/QC questionnaire has for the first time demonstrated that QA and QC usage is not uniform across metabolomics laboratories. Here we present recommendations on how to address the issues concerning QA and QC measurements and reporting in metabolomics

    Integrating larval connectivity into the marine conservation decision-making process across spatial scales.

    Get PDF
    Larval dispersal connectivity is typically integrated into spatial conservation decisions at regional or national scales, but implementing agencies struggle with translating these methods to local scales. We used larval dispersal connectivity at regional (hundreds of kilometers) and local (tens of kilometers) scales to aid in design of networks of no-take reserves in Southeast Sulawesi, Indonesia. We used Marxan with Connectivity informed by biophysical larval dispersal models and remotely sensed coral reef habitat data to design marine reserve networks for 4 commercially important reef species across the region. We complemented regional spatial prioritization with decision trees that combined network-based connectivity metrics and habitat quality to design reserve boundaries locally. Decision trees were used in consensus-based workshops with stakeholders to qualitatively assess site desirability, and Marxan was used to identify areas for subsequent network expansion. Priority areas for protection and expected benefits differed among species, with little overlap in reserve network solutions. Because reef quality varied considerably across reefs, we suggest reef degradation must inform the interpretation of larval dispersal patterns and the conservation benefits achievable from protecting reefs. Our methods can be readily applied by conservation practitioners, in this region and elsewhere, to integrate connectivity data across multiple spatial scales

    Diversification of refugia types needed to secure the future of coral reefs subject to climate change

    Get PDF
    Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioritize the conservation actions for coral reefs under rapid climate change. We found that currently proposed climate refugia and the locations predicted to avoid future coral losses are highly reliant on excess heat metrics, such as degree heating weeks. However, many existing alternative environmental, ecological, and life-history variables could be used to identify other types of refugia that lead to the desired diversified portfolio for coral reef conservation. To improve conservation priorities for coral reefs, there is a need to evaluate and validate the predictions of climate refugia with long-term field data on coral abundance, diversity, and functioning. There is also the need to identify and safeguard locations displaying resistance toprolonged exposure to heat waves and the ability to recover quickly after thermal exposure. We recommend using more metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist, and recover from exposure to high ocean temperatures and the consequences of climate change, thereby shifting past efforts focused on avoidance to a diversified risk-spreading portfolio that can be used to improve strategic coral reef conservation in a rapidly warming climate

    The Molecular Biogeography of the Indo-Pacific: Testing Hypotheses With Multispecies Genetic Patterns

    Get PDF
    Aim: To test hypothesized biogeographic partitions of the tropical Indo-Pacific Ocean with phylogeographic data from 56 taxa, and to evaluate the strength and nature of barriers emerging from this test. \u3eLocation: The Indo-Pacific Ocean. Time Period: Pliocene through the Holocene. Major Taxa Studied: Fifty-six marine species. Methods: We tested eight biogeographic hypotheses for partitioning of the Indo-Pacific using a novel modification to analysis of molecular variance. Putative barriers to gene flow emerging from this analysis were evaluated for pairwise ΦST, and these ΦST distributions were compared to distributions from randomized datasets and simple coalescent simulations of vicariance arising from the Last Glacial Maximum. We then weighed the relative contribution of distance versus environmental or geographic barriers to pairwise ΦST with a distance-based redundancy analysis (dbRDA). Results: We observed a diversity of outcomes, although the majority of species fit a few broad biogeographic regions. Repeated coalescent simulation of a simple vicariance model yielded a wide distribution of pairwise ΦST that was very similar to empirical distributions observed across five putative barriers to gene flow. Three of these barriers had median ΦST that were significantly larger than random expectation. Only 21 of 52 species analysed with dbRDA rejected the null model. Among these, 15 had overwater distance as a significant predictor of pairwise ΦST, while 11 were significant for geographic or environmental barriers other than distance. Main Conclusions: Although there is support for three previously described barriers, phylogeographic discordance in the Indo-Pacific Ocean indicates incongruity between processes shaping the distributions of diversity at the species and population levels. Among the many possible causes of this incongruity, genetic drift provides the most compelling explanation: given massive effective population sizes of Indo-Pacific species, even hard vicariance for tens of thousands of years can yield ΦST values that range from 0 to nearly 0.5

    Citrobacter freundii infection after acute necrotizing pancreatitis in a patient with a pancreatic pseudocyst: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Infections are the most frequent and severe complications of acute necrotizing pancreatitis with a mortality rate of up to 80 percent. Although experimental and clinical studies suggest that the microbiologic source of pancreatic infection could be enteric, information in this regard is controversial.</p> <p>Case presentation</p> <p>We describe a <it>Citrobacter freundii </it>isolation by endoscopy ultrasound fine needle aspiration in a 80-year-old Caucasian man with pancreatic pseudocyst after acute necrotizing pancreatitis.</p> <p>Conclusion</p> <p>Our case report confirms that this organism can be recovered in patients with a pancreatic pseudocyst. On-site cytology feedback was crucial to the successful outcome of this case as immediate interpretation of the fine needle aspiration sample directed the appropriate cultures and, ultimately, the curative therapy. To the best of our knowledge, this is the first reported case of isolated pancreatic <it>C. freundii </it>diagnosed by endoscopy ultrasound fine needle aspiration.</p

    The molecular biogeography of the Indo‐Pacific: Testing hypotheses with multispecies genetic patterns

    Get PDF
    Aim: To test hypothesized biogeographic partitions of the tropical Indo‐Pacific Ocean with phylogeographic data from 56 taxa, and to evaluate the strength and nature of barriers emerging from this test. Location: The Indo‐Pacific Ocean. Time period: Pliocene through the Holocene. Major taxa studied: Fifty‐six marine species. Methods: We tested eight biogeographic hypotheses for partitioning of the Indo‐ Pacific using a novel modification to analysis of molecular variance. Putative barriers to gene flow emerging from this analysis were evaluated for pairwise ΦST, and these ΦST distributions were compared to distributions from randomized datasets and simple coalescent simulations of vicariance arising from the Last Glacial Maximum. We then weighed the relative contribution of distance versus environmental or geographic barriers to pairwise ΦST with a distance‐based redundancy analysis (dbRDA). Results: We observed a diversity of outcomes, although the majority of species fit a few broad biogeographic regions. Repeated coalescent simulation of a simple vicariance model yielded a wide distribution of pairwise ΦST that was very similar to empirical distributions observed across five putative barriers to gene flow. Three of these barriers had median ΦST that were significantly larger than random expectation. Only 21 of 52 species analysed with dbRDA rejected the null model. Among these, 15 had overwater distance as a significant predictor of pairwise ΦST, while 11 were significant for geographic or environmental barriers other than distance. Main conclusions: Although there is support for three previously described barriers, phylogeographic discordance in the Indo‐Pacific Ocean indicates incongruity between processes shaping the distributions of diversity at the species and population levels. Among the many possible causes of this incongruity, genetic drift provides the most compelling explanation: given massive effective population sizes of Indo‐Pacific species, even hard vicariance for tens of thousands of years can yield ΦST values that range from 0 to nearly 0.5
    corecore