UNIVERSITY^{OF} BIRMINGHAM

Research at Birmingham

Quality assurance and quality control processes

Dunn, Warwick; Broadhurst, David I.; Edison, Arthur; Guillou, Claude; Viant, Mark; Bearden, Daniel W.; Beger, Richard D.

DOI: 10.1007/s11306-017-1188-9

Document Version Peer reviewed version

Citation for published version (Harvard):

Dunn, WB, Broadhurst, DI, Edison, A, Guillou, C, Viant, MR, Bearden, DW & Beger, RD 2017, 'Quality assurance and quality control processes: summary of a metabolomics community questionnaire', Metabolomics, vol. 13, no. 5, 50. https://doi.org/10.1007/s11306-017-1188-9

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

Checked for eligibility: 24/05/2017. The final publication is available at Springer via http://dx.doi.org/10.1007/s11306-017-1188-9.

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.

• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

<u>±</u>

1	1	Quality assurance and quality control processes: Summary of a
1 2	2	metabolomics community questionnaire
3 4	3	
5 6	4	Warwick B. Dunn ¹ , David I. Broadhurst ² , Arthur Edison ³ , Claude Guillou ⁴ , Mark R.
7 8	5	Viant ¹ , Daniel W. Bearden ^{5*} and Richard D. Beger ^{6*}
9 10	6	
11 12	7	¹ School of Biosciences and Phenome Centre Birmingham, University of
13 14	8	Birmingham, Birmingham, B15 2TT, UK
15 16	9	² School of Science, Edith Cowan University, Joondalup 6017, Perth, Western
17 18	10	Australia
19 20	11	³ Department of Genetics, University of Georgia, Athens, GA 30602-7223, USA
20 21	12	⁴ Institute for Health and Consumer Protection, Systems Toxicology Unit,
22	13	European Commission - Joint Research Centre, Italy.
24 25	14	⁵ Chemical Sciences Division, Hollings Marine Laboratory, National Institute of
26 27	15	Standards and Technology, Charleston, SC 29412 USA
28 29	16	⁶ National Center for Toxicological Research, US Food and Drug Administration,
30 31	17	3900 NCTR Road, Jefferson, AR 72079, USA
32 33	18	
34 35	19	
36 27	20	*Corresponding authors:
38	21	Rick Beger: richard.beger@fda.hhs.gov
39 40	22	Dan Bearden: dan.bearden@nist.gov
41 42	23	
43 44	24	
45 46	25	Keywords: metabolomics, quality assurance, quality control, questionnaire,
47 48	26	Metabolomics Society
49 50	27	
51 52		
53 54		
55 56		
50 57		
58 59		
6U 61		
62 63		Dago 1
64		r age 1

28 Abstract

30 Introduction

The Metabolomics Society Data Quality Task Group (DQTG) developed a questionnaire regarding quality assurance (QA) and quality control (QC) to provide baseline information about current QA and QC practices applied in the international metabolomics community.

Objectives

The DQTG has a long-term goal of promoting robust QA and QC in the
metabolomics community through increased awareness via communication,
outreach and education, and through the promotion of best working practices.
An assessment of current QA and QC practices will serve as a foundation for
future activities and development of appropriate guidelines.

43 Method

QA was defined as the set of procedures that are performed in advance of
analysis of samples and that are used to improve data quality. QC was defined as
the set of activities that a laboratory does during or immediately after analysis
that are applied to demonstrate the quality of project data. A questionnaire was
developed that included 70 questions covering demographic information, QA
approaches and QC approaches and allowed all respondents to answer a subset
or all of the questions.

52 Result

The DQTG questionnaire received 97 individual responses from 84 institutions
in all fields of metabolomics covering NMR, LC-MS, GC-MS, and other analytical
technologies.

57 Conclusion

There was a vast range of responses concerning the use of QA and QC approaches that indicated the limited availability of suitable training, lack of Standard Operating Procedures (SOPs) to review and make decisions on quality, and limited use of standard reference materials (SRMs) as OC materials. The DQTG QA/QC questionnaire has for the first time demonstrated that QA and QC usage is not uniform across metabolomics laboratories. Here we present recommendations on how to address the issues concerning QA and QC measurements and reporting in metabolomics.

Introduction

Metabolomics is a scientific approach applied to the systems analysis of metabolism [Dunn 2011] operating in microbes, plants and animals [Furusawa 2013; Kusano 2015; Cheng 2015]. The discipline of metabolomics is less than 20 years of age [Oliver 1998] although the roots are much older [Pauling 1971]. Metabolomics studies typically use a pipeline from experimental design through analytical measurements (sample preparation and data acquisition) to bioinformatics processing (data processing and statistical analysis) [Brown 2005]. The validity of and confidence in the biological conclusions resulting from this pipeline are highly dependent on the quality of the procedures applied during the metabolomics study. The appropriate application of quality assurance (QA) and quality control (QC) processes are important but are often overlooked in metabolomics. In targeted metabolite studies, guidelines are available to guide the scientist in some aspects of the process including the most frequently applied Food and Drug Administration (FDA) guidelines for bioanalytical method validation [http://www.fda.gov/downloads/Drugs/Guidance/ucm070107.pdf.] as well as other materials [Garfield 2000; Hibbert 2007; Westgard 2008; Booth 2015]. However, there are currently no clear guidelines for untargeted metabolomic studies.

The Metabolomics Society's mission includes 'To promote the growth and development of the field of metabolomics internationally" [Metabolomics Society website]. To address this mission, several scientific task groups have been established to act for the community in areas requiring international community consensus. One of these is the Data Quality Task Group (DQTG) chaired by Drs. Daniel Bearden and Richard Beger. The DQTG promotes robust QA and QC in the metabolomics community through increased awareness via communication, outreach and education, and through the promotion of best working practices [Bearden 2014; Metabolomics Society task group website]. One objective of this task group is to define the current application levels of QA and QC processes in both targeted and untargeted studies across all applications in metabolomics. To complete this objective, the task group operated a questionnaire for 2 months (August September 2015) via the SurveyMonkey website (https://www.surveymonkey.com), which was advertised via e-mail alerts, Metabolomics Society web pages, Twitter and MetaboNews newsletters. The questionnaire included 70 questions covering demographic information. OA approaches and QC approaches and allowed all respondents to answer a subset or all of the questions. All responses are available in the supplementary information and on the Metabolomics Society website [13]. Here we will summarize the most important information and facts derived from the questionnaire and a number of important recommendations.

The respondents

- 97 respondents
- 36 % were principal investigators (PIs) or group leaders, 14 % were staff scientists, 20 % were post-doctoral researchers and 19 % were PhD students.

	115	• 11 % of respondents had less than 2 years of experience in metabolomics
1	116	with 31 % having greater than 8 years experience.
2	117	• The respondents applied metabolomics in a diversity of different
4	118	applications and many respondents worked across multiple disciplines
5	119	including clinical sciences (65 %), toxicology (35 %) and systems biology
6	120	(45 %).
7 0	121	• 70 % responded as working in a combination of a biological/chemical
8 9	122	laboratory and data processing/bioinformatics.
10	123	• Greater than 70 % of respondents worked with cells, biofluids and tissues
11	124	and investigated microbes (42%), plant (34%), mammals (62%) and
12	125	humans (76%). 73% and 88% of respondents applied targeted and
14	126	untargeted assays, respectively, with 34 % applying NMR spectroscopy in
15	127	their studies, 83 % applying liquid chromatography-mass spectrometry
16	128	and 50 % applying gas chromatography-mass spectrometry.
17 10	129	• 74% of respondents investigated less than 200 samples in a typical
19	130	biological study and 63 % studied less than 5000 total biological samples
20	131	each year.
21	132	
22	133	Training
23 24	134	Quality processes include training and competence assessment to ensure a
25	135	minimum quality-level is associated with processes involving staff. 65 % of 94
26	136	responses defined that they operate in an environment with no in-house training
27	137	program and 74% were not required to be involved in ongoing continuous
20 29	138	professional education. In environments where training was conducted (33
30	139	responses), professional staff (49%) and post-doctoral/graduate staff (36%)
31	140	were the major providers of training. Where training is provided, only 21 % of
32	141	instrument operators have to pass a certification test after training, with 57 %
33 34	142	applying professional staff to perform the assessment. 79 % of 85 responses do
35	143	not operate in an environment where there was a requirement to pass a
36	144	certification test after training. 73 % of 33 responses applied periodic checks of
37	145	professional practice with 58% of checks performed by professional staff as
38 39	146	indicated by 33 responses.
~ ~		

Standard Operating Procedures

The mistakes that can be introduced into metabolomics experiments through improper or inconsistent pre-analytical or analytical procedures may cause the data to be inaccurate or invalid, and this may lead to erroneous findings and conclusions. For examples see [Gika 2008; Bernini 2011; Kamlage 2014; Dunn 2012]. Consistent procedures as simple as pipetting, balance usage, sample cross-contamination control, proper preparation of solvents and sample extraction techniques all contribute to the veracity of the analytical measurements and should be thoroughly documented in Standard Operating Procedures (SOPs) and enforced in training programs. For long-term studies or interlaboratory studies, SOPs are essential for communicating well and ensuring the consistency of the data.

Eighty-seven respondents answered questions related to SOPs. SOPs were available in the laboratories of 76 % of respondents with 58 % developed in-house and a further 37 % developed from in-house and published methods.

When investigated in more detail, 90 % of respondents had access to SOPs for sample extraction, 53 % for sample storage, 75 % for analytical instruments, 52 % for assessment of data from QC samples and 33 % for deciding when QC data from instrumental analysis has failed and defining how to correct the instrumental data. As a matter of concern and shown for 84 responses was that б 70 % of respondents did not have access to a protocol for independent review of quality-related results (Figure 1A) and 80 % did not have access to a written protocol of QA review criteria (Figure 1B).

Sample measurement validation

The majority of respondents (82 responses) validate sample measurements with 73 % using repeat sample extractions and analyses, 87 % performing repeated analysis of the same sample and 54 % analyzing a historical sample periodically (Figure 2). 88% of 80 responses analyze a blank sample with extraction performed as for biological samples. Blank samples were analyzed either at the start and end of the analytical batch (28%), at regular intervals (44%) or randomly (21%) as defined in 68 responses. 78% of respondents operated a process to reduce carryover (80 responses) and 91 % randomize the order of sample analysis (80 responses). 94 % operated instrument condition checks and 79 % of 80 responses did not apply standard reference materials (SRMs); when applicable, 47 % applied a SRM once or less than once a day and 16 % greater than once per day. Methods for reporting of QC data were variable in the 80 responses collected; 34 % reported precision measurements for each metabolite, 45 % report a single range of precisions for all metabolites, 24 % report QC data on a boxplot, 56 % visualize QC samples on a PCA scores plot and 56 % provide a descriptive statement of the QC results.

QC samples

Of 80 responses, 83 % of respondents applied pooled project materials and 48 % applied standard reference materials (SRMs) as OC materials. This contradicts the results for SRM use as defined above in the sample measurement validation section. Figure 3 illustrates how often QC samples were applied for different processes including the assessment of consistency in sample preparation (80 %) and chromatography column integrity (76%). Importantly, 59% of respondents applied replicate extractions and 69% applied replicate analytical measurements with 85 % analyzing individual samples and 15 % analyzing a single pooled sample.

Data storage

Of 84 responses, 89 % store data in an archive, with 95 % of data storage being performed in an in-house archive. A lower percentage (73%) archived QA/QC data.

Inter-laboratory comparisons

Laboratory accreditation

Of 82 responses, 33 % had participated in an inter-laboratory comparison study and 48% were interested in participating in a future inter-laboratory comparison.

	213	Of 85 responses, 89 % were not required to meet laboratory accreditation and
1	214	74 % were not voluntarily attempting to meet any accreditation.
2	215	· · · / · · · · · · · · · · · · · · · ·
3	215	
4	210	
5	217	
6	218	Biggest issues in QA and QC implementation and processes
7	219	The most frequent comments related to the currently regarded biggest issues in
8	220	OA and OC are detailed below:
10	221	 Training including staff turnover and lack of training available outside the
11	221	• I failing including stall turnover and lack of training available outside the
12	ZZZ	organization
13	223	• SOP formalization, consistency and maintenance including reported
14	224	changes to published methods (for example papers published in <i>Nature</i>
15	225	Protocols
16	226	 Ensuring routing compliance to SOPs and OA processos
17	220	• Ensuring routine compliance to sol s and QA processes
18	227	• Insufficient control over sample collection and sampling consistency
19	228	• Inadequate availability of reference standards, isotopically labeled
20	229	compounds, QC samples and SRMs
21	230	 Providing a balance between OA/OC and sample throughput
22	221	 Of does not contribute to assessment of output by the wider community.
23	201	• QC does not contribute to assessment of output by the while community
24	232	and there is a need for true standards across the community
25 26	233	 A global strategy for QA/QC and its review is required
20 27	234	• Establishment of QC acceptance criteria as currently there is a lack of
28	235	reported OC results and acceptance criteria
29	236	 Additional measures beyond pooled OC samples
30	230	• Additional measures beyond pooled de samples
31	237	
32	238	Key conclusions and recommendations
33	239	1. The level of training, both in-house and external to the organization, is low;
34	240	65 % of responses replied that they operate in an environment with no in-house
35	241	training program. 74 % of responses were not required to be involved in ongoing
36	242	continuous professional education.
3/	243	Recommendation: Enhance training focused on OA and OC available as online and
30 20	213	face to face courses (for example, the Dirmingham Matchelomics Training Control
40	244	Juce-to-Juce courses (for example, the Dirininghum Metabolomics Training Centre
41	245	operates a 2-day course focused on QA and QC processes).
42	246	
43	247	2. 76 % of respondents applied SOPs. However, 70 % of respondents did not
44	248	have access to a protocol for review of quality and 80 % did not have access to
45	249	protocols focused on a review of quality processes.
46	250	Pacommondation: Appropriate gaancies and the Metabolomics Society should
47	250	Recommendation. Appropriate agencies and the metabolomics society should
48	251	provide guidance on quality assurance processes and their review; develop
49	252	consensus processes through specialist meetings and reports.
50	253	
51	254	3. The majority of respondents validate sample measurements, apply sample
52 53	255	blanks, apply protocols to minimize sample carryover and randomize the
54	256	analysis order of hiological samples
55	250	Decommondation. To provide education to the metabolomics community with an
56	257	Recommendation. To provide education to the metabolomics community, with an
57	258	emphasis on early career scientists, on sample measurement validation, and to
58	259	provide continuing education to ensure these good practices continue.
59	260	
60		
61		
62		
63		Раде б
64		

- 4. 83 % of respondents applied pooled project materials and 48 % applied standard reference materials (SRMs) as QC materials. 59% of respondents applied replicate extractions and 69% applied replicate analytical measurements. Recommendation: To provide education to the metabolomics community, with an
- б emphasis on early career scientists, on usage of quality materials, and to provide continuing education to ensure these good practices continue.

- 5.79 % of respondents did not access SRM materials.
- Recommendation: To communicate with the metabolomics community to define the types and volumes of SRMs required.
- 6. 33 % had participated in an inter-laboratory comparison study and 48% were interested in participating in a future inter-laboratory comparison.
- Recommendation: To communicate with the metabolomics community to define the types and frequency of inter-laboratory comparison exercises and encourage independent agencies to support inter-laboratory exercises.
- 7.89% of respondents were not required to meet laboratory accreditation and 74 % were not voluntarily attempting to meet any accreditation.
- Recommendation: To investigate the requirement for laboratory accreditation with the regulatory agencies, funding bodies, the Metabolomics Society and the metabolomics community.
- 8. There is little incentive for laboratories to improve their QA/QC practices, especially given the non-trivial costs associated with a thorough QA/QC program.
- Recommendation: Recognizing the need to provide further incentive for laboratories to improve overall QA/QC practices, expert panels should be convened to develop workable, practical QA/QC recommendations and guidelines. One possible mechanism is a workshop currently being planned for later in 2017 that will define appropriate QA/QC frameworks that may be adopted widely in laboratories and, possibly, by funders, data repositories and scientific publishers.

Disclaimer

The opinions expressed in this publication do not necessarily represent those of the U.S. Food and Drug Administration or the National Institute of Standards and Technology. Certain commercial equipment, instruments, or materials are identified in this paper to specify adequately the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose. Reference to the content of this paper for commercial advertising purposes with regard to commercial equipment, instruments, or materials is prohibited (15 CFR 200.113).

Compliance with Ethical Standards

The authors have defined that there are no potential conflicts of interest. All data is anonymised and meets with appropriate ethical standards for this type of community questionnaire.

References

Bearden, D.W., Beger, R.D., Broadhurst, D., Dunn, W., Edison, A., Guillou, C., Trengove, R., Viant, M. and Wilson, I., (2014). The New Data Quality Task Group (DQTG): ensuring high quality data today and in the future. Metabolomics, 10(4), 539-540.

Bernini, P., Bertini, I., Luchinat, C., Nincheri, P., Staderini, S. and Turano, P., (2011). Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. Journal of biomolecular NMR, 49(3-4), 231-243.

Booth, B., Arnold, M.E., DeSilva, B., Amaravadi, L., Dudal, S., Fluhler, E., Gorovits, B., Haidar, S.H., Kadavil, J., Lowes, S. and Nicholson, R., (2015). Workshop report: Crystal City V—quantitative bioanalytical method validation and implementation: the 2013 revised FDA guidance. The AAPS Journal, 17(2), 277-288.

б

 Brown, M., Dunn, W.B., Ellis, D.I., Goodacre, R., Handl, J., Knowles, J.D., O'Hagan, S., Spasić, I. and Kell, D.B., (2005) A metabolome pipeline: from concept to data to knowledge. Metabolomics, 1(1), 39-51.

Cheng, S., Larson, M.G., McCabe, E.L., Murabito, J.M., Rhee, E.P., Ho, J.E., Jacques, P.F., Ghorbani, A., Magnusson, M., Souza, A.L. and Deik, A.A., (2015). *Distinct* metabolomic signatures are associated with longevity in humans. Nature Communications, 6, 6791.

Dunn, W.B., Broadhurst, D.I., Atherton, H.I., Goodacre, R. and Griffin, J.L., Dunn, W.B., (2011). Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40(1), 387-426.

Dunn, W.B., Wilson, I.D., Nicholls, A.W. and Broadhurst, D., (2012). The importance of experimental design and QC samples in large-scale and MS-driven *untargeted metabolomic studies of humans.* Bioanalysis, 4(18), 2249-2264.

Furusawa, Y., Obata, Y., Fukuda, S., Endo, T.A., Nakato, G., Takahashi, D., Nakanishi, Y., Uetake, C., Kato, K., Kato, T. and Takahashi, M., (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 504(7480), 446-450.

Garfield, F.M. (2000). Quality Assurance Principles for Analytical Laboratories. Washington, DC: Association of Official Analytical Chemists.

Page 8

	358	
1	250	Ciles HC Theodoridic CA and Wilson LD (2008) Liquid chromatography and
2	333	dika, n.u., meduonuis, u.A. and wilson, i.D., (2000). Elyuu chromatography und
3	360	utra-performance liquia chromatography-mass spectrometry fingerprinting of
4	361	human urine: sample stability under different handling and storage conditions
5	362	for metabonomics studies. Journal of Chromatography A, 1189(1), 314-322.
6	363	
7	364	<i>Guidance for Industry: Biognalytical Method Validation</i> U.S. Department of Health
8	365	and Human Services: Food and Drug Administration: Center for Drug Evaluation
9	303	and Pressarch (CDED). Contar for Veteringers Medicine (CVM).
10	300	and Research (CDER); Center for Vetermary Medicine (CVM):
12	367	http://www.fda.gov/downloads/Drugs/Guidance/ucm070107.pdf.
13	368	
14	369	Hibbert, D.B. (2007). <i>Quality Assurance for the Analytical Chemistry Laboratory</i> .
15	370	Oxford: Oxford University Press.
16	371	
17	372	Kamlage B. Maldonado S.G. Bethan B. Peter F. Schmitz O. Liebenberg V and
18	272	Schotz D (2014) Quality markers addressing programutical variations of blood
19	373	Schatz, P., (2014). Quality markers addressing preunalytical variations of blood
20	3/4	ana plasma processing identified by broad and targeted metabolite profiling.
21	375	Clinical Chemistry, 60(2), 399-412.
22	376	
23 24	377	Kusano, M., Yang, Z., Okazaki, Y., Nakabayashi, R., Fukushima, A. and Saito, K.
24 25	378	(2015). Using Metabolomic Approaches to Explore Chemical Diversity in Rice. Mol.
26	379	Plant 8(1) 58-67
27	380	
28	201	Matabalamia Casiata 0/20/2016]. Available from
29	202	Metabolomics Society. 6/29/2016]; Available from:
30	382	<u>http://metabolomicssociety.org/</u> .
31	383	
32	384	Data Quality Task Group. 8/29/2016]; Available from:
33 34	385	http://metabolomicssociety.org/board/scientific-task-groups/data-quality-task-
35	386	group.
36	387	
37	388	Oliver, S.G., Winson, M.K., Kell, D.B. and Baganz, F., (1998), Systematic functional
38	389	analysis of the yeast genome Trends Riotechnol 16(9) 373-8
39	200	unalysis of the yeast genome. Thends Diotechnol, 10(7), 375 0.
40	201	Deuling L. Dobinson A.B. Toronishi D. and Corry D. (1071) Augustitative Anglusia
41 42	202	Fauling, L., Kobinson, A.D., Teranishi, K. anu Cary, F. (1971). Quunuuuve Analysis
42	392	of Urine vapor and Breath by Gas-Liquia Partition Chromatography. Proc. Nat.
44	393	Acad. Sci. USA, 68(10), 2374-2376.
45	394	
46	395	Westgard, J.O. (2008). Basic Method Validation: Training in Analytical Quality
47	396	Management for Healthcare Laboratories. 3 rd , Madison:Westgard Quality
48	397	Corporation.
49	398	F
50	200	
51 52	399	
53	400	
54		
55		
56		
57		
58		
59		
60		
61 60		
02 63		
64		Page 9
65		

 $\begin{array}{c} 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ \end{array}$

401 Figure Captions402

403 Figure 1. A) Responses to "Do you have a protocol for independent review of
404 quality-related results?"; B) Responses to "Do you have a written protocol for QA
405 review criteria?"

407 Figure 2. Average response to "Do you validate your project sample
408 measurements with: (Check all that apply)?"
409

410 Figure 3. Average responses to "What types of QC materials do you routinely use411 in analytical measurements for metabolomics projects? (Check all that apply)?

Page 13