2,690 research outputs found

    Challenges in Hadron Physics

    Get PDF
    In this talk, I address some open problems in hadron physics and stress their importance for a better understanding of QCD in the confinement regime.Comment: Outlook talk at MESON 2004, Krakow, Poland, June 4-8, 2004, typos correcte

    Secondary atomization of coal-water fuels for gas turbine applications

    Get PDF
    The main research objective is to determine the effect of coal-water fuel (CWF) treatment on atomization quality when applied to an ultrafine coal water fuel (solids loading - 50%) and at elevated pressures. The fuel treatment techniques are expected to produce secondary atomization, i.e., disruptive shattering of CWF droplets subsequent to their leaving the atomizing nozzle. Upon combustion, the finer fuel droplets would then yield better burnout and finer fly ash size distribution, which in turn could reduce problems of turbine blade erosion. The parallel objective was to present quantitative information on the spray characteristics of CWF (average droplet size and spray shape and angle) with and without fuel treatment for purposes of application to the design of CWF-burning gas turbine combustors. The experiments include laser diffraction droplet size measurements and high speed photographic studies of CWF sprays in the MIT Spray Test Facility to determine mean droplet size (mass median diameter), droplet size distribution, and spray shape and angle. For the spray tests at elevated pressures, pressure vessels were constructed and installed in the spray test rig. For support of data analyses, a capillary tube viscometer was used to measure the CWF viscosity at the high shear rate that occurs in an atomizer (> 104 sec' ). A semi-empirical relationship was developed giving the CWF spray droplet size as a function of the characteristic dimensionless parameters of twin-fluid atomization, including the Weber number, the Reynolds number, and the air-to-fuel mass flow ratio. The correlation was tested experimentally and good agreement was found between calculated and measured drop sizes when the high shear viscosity of the CWF was used in the semi-empirical equation. Water and CWF spray tests at elevated pressure were made. Average droplet sizes measured as a function of atomizing air-to-fuel ratios (AFRs) at various chamber pressures show that the droplet mass median diameter (MMD) decreases with increasing AFR at a given chamber pressure and increases with increasing chamber pressure at a given AFR. In particular, the results show that droplet sizes of CWF sprays decrease with increasing chamber pressure if the atomizing air velocity is held constant. Of the fuel treatment techniques investigated, the heating of CWF (flash-atomization) was found to be very effective in reducing droplet size, not only at atmospheric pressure but also at elevated pressure. Secondary atomization by C02 absorption (used in a previous study) had given favorable results on CWF combustion, but in this present case this fuel treatment did not seem to have any observable effect on the drop size distribution of the CWF spray at room temperature. The spray angle was observed to reduce with increasing chamber pressure for given atomizing conditions (AFR, fuel flow rate, fuel temperature). The decreasing entrainment rate per unit length of spray with increasing chamber pressure was mainly responsible for the reduction of the spray angle. The heating of the CWF increased the spray angle, both at atmospheric and elevated pressures. A model was developed to predict spray angle change for the effects of the flash-atomization as a function of AFR, fuel flow rate, and the superheat of the water

    Modeling cosmogenic radionuclides 10Be and 7Be during the Maunder Minimum using the ECHAM5-HAM general circulation model

    Get PDF
    All existing 10Be records from Greenland and Antarctica show increasing concentrations during the Maunder Minimum period (MM), 1645–1715, when solar activity was very low and the climate was colder (little ice age). In detail, however, the 10Be records deviate from each other. We investigate to what extent climatic changes influence the 10Be measured in ice by modeling this period using the ECHAM5-HAM general circulation model. Production calculations show that during the MM the mean global 10Be production was higher by 32% than at present due to lower solar activity. Our modeling shows that the zonally averaged modeled 10Be deposition flux deviates by only ~8% from the average increase of 32%, indicating that climatic effects are much smaller than the production change. Due to increased stratospheric production, the 10Be content in the downward fluxes is larger during MM, leading to larger 10Be deposition fluxes in the subtropics, where stratosphere-troposphere exchange (STE) is strongest. In polar regions the effect is small. In Greenland the deposition change depends on latitude and altitude. In Antarctica the change is larger in the east than in the west. We use the 10Be/7Be ratio to study changes in STE. We find larger change between 20° N–40° N during spring, pointing to a stronger STE in the Northern Hemisphere during MM. In the Southern Hemisphere the change is small. These findings indicate that climate changes do influence the 10Be deposition fluxes, but not enough to significantly disturb the production signal. Climate-induced changes remain small, especially in polar regions

    Meridional transport and deposition of atmospheric 10Be

    No full text
    10Be concentrations measured in ice cores exhibit larger temporal variability than expected based on theoretical production calculations. To investigate whether this is due to atmospheric transport a general circulation model study is performed with the 10Be production divided into stratospheric, tropospheric tropical, tropospheric subtropical and tropospheric polar sources. A control run with present day 10Be production rate is compared with a run during a geomagnetic minimum. The present 10Be production rate is 4–5 times higher at high latitudes than in the tropics whereas during a period of no geomagnetic dipole field it is constant at all latitudes. The 10Be deposition fluxes, however, show a very similar latitudinal distribution in both the present day and the geomagnetic minimum run indicating that 10Be is well mixed in the atmosphere before its deposition. This is also confirmed by the fact that the contribution of 10Be produced in the stratosphere is dominant (55%–70%) and relatively constant at all latitudes. The contribution of stratospheric 10Be is approximately 70% in Greenland and 60% in Antarctica reflecting the weaker stratosphere-troposphere air exchange in the Southern Hemisphere

    Evaluation of role of concentration and molecular weight of oat ÎČ-glucan in determining effect of viscosity on plasma glucose and insulin following an oral glucose load

    Get PDF
    Data from clinical studies established that there was an inverse linear relationship between measures of postprandial blood glucose and insulin responses to an oral glucose load, consumed in a drink, and the logarithm of viscosity of the drink. These data have been re-analysed using concentration and molecular weight as the dependent variables. Molecular weight (M) of the ÎČ-glucans used was determined using high-performance size exclusion chromatography equipped with a triple detector system of right angle light scattering, viscometry and refractive index. A significant relationship between changes in peak blood glucose and a combination of logarithm of the concentration and logarithm of M was foun

    Current Issues in Science Education

    Get PDF
    Exam paper (Supplementary) for second semeste

    Cosmogenic Radionuclides as an Extension of the Neutron Monitor Era into the Past: Potential and Limitations

    Get PDF
    The cosmogenic radionuclides, 10Be, 14C and others, provide a record of the paleo-cosmic radiation that extends >10,000 years into the past. They are the only quantitative means at our disposal to study the heliosphere prior to the commencement of routine sunspot observations in the 17th century. The cosmogenic radionuclides are primarily produced by secondary neutrons generated by the galactic cosmic radiation, and can be regarded, in a sense, as providing an extrapolation of the neutron monitor era into the past. However, their characteristics are quite different from the man-made neutron monitor in several important respects: (1)they are sensitive to somewhat lower cosmic ray energies; (2)their temporal resolution is ∌1 to 2 years, being determined by the rapidity with which they are sequestered in ice, biological, or other archives; (3)the statistical precision for annual data is very poor (∌19%); however it is quite adequate (∌5% for 22-year averages) to study the large variations (±40%) that have occurred in the paleo-cosmic ray record in the past between grand solar minima and maxima. The data contains "noise” caused by local meteorological effects, and longer-term climate effects, and the use of principal component analysis to separate these "system” effects from production effects is outlined. The concentrations of 10Be decreased by a factor of two at the commencement of Holocene, the present-day "interglacial”, due to a 100% increase in the ice accumulation rates in polar regions. The use of the 10Be flux to study heliospheric properties during the last glacial is discussed briefl

    The eventization of leisure and the strange death of alternative Leeds

    Get PDF
    The communicative potential of city spaces as leisure spaces is a central assumption of political activism and the creation of alternative, counter-cultural and subcultural scenes. However, such potential for city spaces is limited by the gentrification, privatization and eventization of city centres in the wake of wider societal and cultural struggles over leisure, work and identity formation. In this paper, we present research on alternative scenes in the city of Leeds to argue that the eventization of the city centre has led to a marginalization and of alternative scenes on the fringes of the city. Such marginalization has not caused the death of alternative Leeds or political activism associated with those scenes—but it has changed the leisure spaces (physical, political and social) in which alternative scenes contest the mainstream
    • 

    corecore