10 research outputs found

    Problems of bone - orthopaedic implant interactions

    Get PDF
    The paper presents main aspects of modern orthopaedic implants design and operation. Influence of implant shape and especially stiffness characteristics and stress distribution on the surface of implant, which is in direct contact with bone, are presented. As the second factor influence of implant shape on the bone remodelling processes in the macro and micro scale was analyzed. Main distribution of general bone density as well as distribution of cancellous bone trabecules in the presence of implant is analyzed. Finally, new type of surface layer (including technology of layer manufacturing) was developed. DOI: 10.17489/biohun/2008/1/4

    Determination of Stent Load Conditions in New Zealand White Rabbit Urethra

    No full text
    Background: Frequency of urethral stenosis makes it necessary to develop new innovative methods of treating this disease. This pathology most often occurs in men and manifests itself in painful urination, reduced urine flow, or total urinary retention. This is a condition that requires immediate medical intervention. Methods: Experimental tests were carried out on a rabbit in order to determine the changes of pressure in the urethra system and to estimate the velocity of urine flow. For this purpose, a measuring system was proposed to measure the pressure of a fluid-filled urethra. A fluoroscope was used to observe the deformability of the bladder and urethra canal. Results: Based on these tests, the range of changes in the urethra tube diameter, the pressures inside the system, and the flow velocity during micturition were determined. Conclusions: The presented studies allowed determining the behavior of the urethra under the conditions of urinary filling. The fluid-filled bladder and urethra increased their dimensions significantly. Such large changes require that the stents used for the treatment of urethral stenosis should not have a fixed diameter but should adapt to changing urethral dimensions

    Numerical Analysis of Deformation and Flow in the Proximal Area of the Urethra

    No full text
    Pathological conditions of a male urethra, including fibrosis, have a mechanical background along the entire length of the urethra. They may be caused by excessive deformation of the urethra locally or globally. The condition of prolonged overload causes abnormal tissue remodelling and, consequently, the formation of a thick layer of scar tissue differentiated from the connective tissue of the urethra. This tissue, which has higher mechanical properties, is not highly deformable and therefore, causes a decrease in the diameter of the urethra, which results in conditions that disturb the natural flow of urine. In this paper, it was decided to determine the deformation conditions in the proximal part of the urethra. The study was conducted in three main stages. Transverse sections of the animal urethral tissues were prepared in order to examine mechanical properties and perform histological examinations. On the basis of these examinations, material models which fitted best for the experimental results were sought. Material constants of the Mooney-Rivlin material model with the best fit ratio were determined for further research. On the basis of histological photographs, a geometrical and numerical model of the urethra was developed. The urethra was tested in a flat state of deformation. The strain and stress fields of the Caucha tensor were examined. The methodology of testing the dynamics of the urine flow in the highly deformable urethra was proposed. This is important for the analysis of the influence of at excessive pressure on pathological tissue remodelling leading to fibrosis

    Numerical Analysis of Deformation and Flow in the Proximal Area of the Urethra

    No full text
    Pathological conditions of a male urethra, including fibrosis, have a mechanical background along the entire length of the urethra. They may be caused by excessive deformation of the urethra locally or globally. The condition of prolonged overload causes abnormal tissue remodelling and, consequently, the formation of a thick layer of scar tissue differentiated from the connective tissue of the urethra. This tissue, which has higher mechanical properties, is not highly deformable and therefore, causes a decrease in the diameter of the urethra, which results in conditions that disturb the natural flow of urine. In this paper, it was decided to determine the deformation conditions in the proximal part of the urethra. The study was conducted in three main stages. Transverse sections of the animal urethral tissues were prepared in order to examine mechanical properties and perform histological examinations. On the basis of these examinations, material models which fitted best for the experimental results were sought. Material constants of the Mooney-Rivlin material model with the best fit ratio were determined for further research. On the basis of histological photographs, a geometrical and numerical model of the urethra was developed. The urethra was tested in a flat state of deformation. The strain and stress fields of the Caucha tensor were examined. The methodology of testing the dynamics of the urine flow in the highly deformable urethra was proposed. This is important for the analysis of the influence of at excessive pressure on pathological tissue remodelling leading to fibrosis
    corecore