18 research outputs found

    Le sevrage ventilatoire prolongé en réanimation médicale au CHU de Rouen (impact d'une unité de sevrage)

    No full text
    résuméROUEN-BU Médecine-Pharmacie (765402102) / SudocSudocFranceF

    Diagnostic yield of viral multiplex PCR during acute exacerbation of COPD admitted to the intensive care unit: a pilot study

    No full text
    International audienceAcute exacerbation of chronic obstructive pulmonary disease (AECOPD) is one of the leading causes of admission to the intensive care unit, often triggered by a respiratory tract infection of bacterial or viral aetiology. Managing antibiotic therapy in this context remains a challenge. Respiratory panel molecular tests allow identifying viral aetiologies of AECOPD. We hypothesized that the systematic use of a respiratory multiplex PCR (mPCR) would help antibiotics saving in severe AECOPD. Our objectives were to describe the spectrum of infectious aetiologies of severe AECOPD, using a diagnostic approach combining conventional diagnostic tests and mPCR, and to measure antibiotics exposure. The study was bicentric, prospective, observational, and included 105 critically ill patients with a severe AECOPD of presumed infectious aetiology, in whom a respiratory mPCR with a viral panel was performed in addition to conventional microbiological tests. Altogether, the microbiological documentation rate was 50%, including bacteria alone (19%), respiratory viruses alone (16%), and mixed viruses and bacterial species (16%). The duration of antibiotic therapy was shorter in patients without documented bacterial infection (5.6 vs. 9 days; P = 0.0006). This pilot study suggests that molecular tests may help for the proper use of anti-infective treatments in critically ill patients with severe AECOPD

    Trends in clinical characteristics and outcomes of all critically ill COVID-19 adult patients hospitalized in France between March 2020 and June 2021: a national database study

    No full text
    Abstract Introduction Studies regarding coronavirus disease 2019 (COVID-19) were mainly performed in the initial wave, but some small-scale data points to prognostic differences for patients in successive waves. We therefore aimed to study the impact of time on prognosis of ICU-admitted COVID-19 patients. Method We performed a national retrospective cohort study, including all adult patients hospitalized in French ICUs from March 1, 2020 to June 30, 2021, and identified three surge periods. Primary and secondary outcomes were in-hospital mortality and need for invasive mechanical ventilation, respectively. Results 105,979 critically ill ICU-admitted COVID-19 patients were allocated to the relevant three surge periods. In-hospital mortality for surges 1, 2, and 3 was, respectively, 24%, 27%, and 24%. Invasive mechanical ventilation was the highest level of respiratory support for 42%, 32%, and 31% (p < 0.001) over the whole period, with a decline in the use of vasopressors over time. Adjusted for age, sex, comorbidities, and modified Simplified Acute Physiology Score II at ICU admission, time period was associated with less invasive mechanical ventilation and a high risk of in-hospital death. Vaccination against COVID-19 was associated with a lower likelihood of invasive mechanical ventilation (adjusted sub-hazard ratio [aSHR] = 0.64 [0.53–0.76]) and intra-hospital death (aSHR = 0.80, [0.68–0.95]). Conclusion In this large database of ICU patients admitted for COVID-19, we observed a decline in invasive mechanical ventilation, vasopressors, and RRT use over time but a high risk of in-hospital death. Vaccination was identified as protective against the risk of invasive mechanical ventilation and in-hospital death

    Differences in clinical characteristics and outcomes between COVID-19 and influenza in critically ill adult patients: A national database study

    No full text
    International audienceObjective: Prior to the coronavirus disease 2019 (COVID-19) pandemic, influenza was the most frequent cause of viral respiratory pneumonia requiring intensive care unit (ICU) admission. Few studies have compared the characteristics and outcomes of critically ill patients with COVID-19 and influenza. Methods: This was a French nationwide study comparing COVID-19 (March 1, 2020–June 30, 2021) and influenza patients (January 1, 2014–December 31, 2019) admitted to an ICU during pre-vaccination era. Primary outcome was in-hospital death. Secondary outcome was need for mechanical ventilation. Results: 105,979 COVID-19 patients were compared to 18,763 influenza patients. Critically ill patients with COVID-19 were more likely to be men with more comorbidities. Patients with influenza required more invasive mechanical ventilation (47 vs. 34%, p < 0·001), vasopressors (40% vs. 27, p < 0·001) and renal-replacement therapy (22 vs. 7%, p < 0·001). Hospital mortality was 25% and 21% (p < 0·001) in patients with COVID-19 and influenza, respectively. In the subgroup of patients receiving invasive mechanical ventilation, ICU length of stay was significantly longer in patients with COVID-19 (18 [10–32] vs. 15 [8–26] days, p < 0·001). Adjusting for age, gender, comorbidities, and modified SAPS II score, in-hospital death was higher in COVID-19 patients (adjusted sub-distribution hazard ratio [aSHR]=1.69; 95%CI=1.63–1.75) compared with influenza patients. COVID-19 was also associated with less invasive mechanical ventilation (aSHR=0.87; 95%CI=0.85–0.89) and a higher likelihood of death without invasive mechanical ventilation (aSHR=2.40; 95%CI=2.24–2.57). Conclusion: Despite younger age and lower SAPS II score, critically ill COVID-19 patients had a longer hospital stay and higher mortality than patients with influenza

    Safety of performing fiberoptic bronchoscopy in critically ill hypoxemic patients with acute respiratory failure.: Bronchoscopy in Hypoxemic Patients

    No full text
    International audienceBACKGROUND: The safety of fiberoptic bronchoscopy (FOB) in nonintubated critically ill patients with acute respiratory failure has not been extensively evaluated. We aimed to measure the incidence of intubation and the need to increase ventilatory support following FOB and to identify predictive factors for this event. METHODS: A prospective multicenter observational study was carried out in eight French adult intensive care units. The study included 169 FOB performed in patients with a PaO(2)/FiO(2) ratio ≤ 300. The main end-point was intubation rate. The secondary end-point was rate of increased ventilatory support defined as an increase in oxygen requirement >50 %, the need to start noninvasive positive pressure ventilation (NI-PPV) or increase NI-PPV support. RESULTS: Within 24 h, an increase in ventilatory support was required following 59 bronchoscopies (35 %), of which 25 (15 %) led to endotracheal intubation. The existence of chronic obstructive pulmonary disease (COPD; OR 5.2, 95 % CI 1.6-17.8; p = 0.007) or immunosuppression (OR 5.4, 95 % CI 1.7-17.2; p = 0.004] were significantly associated with the need for intubation in the multivariable analysis. None of the baseline physiological parameters including the PaO(2)/FiO(2) ratio was associated with intubation. CONCLUSIONS: Bronchoscopy is often followed by an increase in ventilatory support in hypoxemic critically ill patients, but less frequently by the need for intubation. COPD and immunosuppression are associated with the need for invasive ventilation in the 24 h following bronchoscopy

    Interest of a simple on-line screening registry for measuring ICU burden related to an Influenza pandemic.

    Get PDF
    International audienceABSTRACT: INTRODUCTION: The specific burden imposed on Intensive Care Units (ICUs) during the A/H1N1 influenza 2009 pandemic has been poorly explored. An on-line screening registry allowed a daily report of ICU beds occupancy rate by flu infected patients (Flu-OR) admitted in French ICUs. METHODS: A prospective inception cohort study with results of an on-line screening registry designed for daily assessment of ICU burden. RESULTS: Among the 108 centers participating to the French H1N1 research network on mechanical ventilation (REVA) - French Society of Intensive Care (SRLF) registry, 69 ICUs belonging to seven large geographical areas voluntarily participated to a website screening-registry. The aim was to daily assess the ICU beds occupancy rate by influenza-infected and non-infected patients for at least three weeks. 391 critically ill infected patients were enrolled in the cohort, representing a subset of 35% of the whole French 2009 pandemic cohort; 73% were mechanically ventilated, 13% required extra corporal membrane oxygenation (ECMO) and 22% died. The global Flu-OR in these ICUs was only 7.6%, but it exceeded a predefined 15% critical threshold in 32 ICUs for a total of 103 weeks. Flu-ORs were significantly higher in University than in non University hospitals. The peak ICU burden was poorly predicted by observations obtained at the level of large geographical areas. CONCLUSIONS: The peak Flu-OR during the pandemic significantly exceeded a 15% critical threshold in almost half of the ICUs, with an uneven distribution with time, geographical areas and between University and non University hospitals. An on-line assessment of Flu-OR via a simple dedicated registry may contribute to better match resources and needs

    Weaning from mechanical ventilation in intensive care units across 50 countries (WEAN SAFE): a multicentre, prospective, observational cohort study.

    No full text
    Current management practices and outcomes in weaning from invasive mechanical ventilation are poorly understood. We aimed to describe the epidemiology, management, timings, risk for failure, and outcomes of weaning in patients requiring at least 2 days of invasive mechanical ventilation. WEAN SAFE was an international, multicentre, prospective, observational cohort study done in 481 intensive care units in 50 countries. Eligible participants were older than 16 years, admitted to a participating intensive care unit, and receiving mechanical ventilation for 2 calendar days or longer. We defined weaning initiation as the first attempt to separate a patient from the ventilator, successful weaning as no reintubation or death within 7 days of extubation, and weaning eligibility criteria based on positive end-expiratory pressure, fractional concentration of oxygen in inspired air, and vasopressors. The primary outcome was the proportion of patients successfully weaned at 90 days. Key secondary outcomes included weaning duration, timing of weaning events, factors associated with weaning delay and weaning failure, and hospital outcomes. This study is registered with ClinicalTrials.gov, NCT03255109. Between Oct 4, 2017, and June 25, 2018, 10 232 patients were screened for eligibility, of whom 5869 were enrolled. 4523 (77·1%) patients underwent at least one separation attempt and 3817 (65·0%) patients were successfully weaned from ventilation at day 90. 237 (4·0%) patients were transferred before any separation attempt, 153 (2·6%) were transferred after at least one separation attempt and not successfully weaned, and 1662 (28·3%) died while invasively ventilated. The median time from fulfilling weaning eligibility criteria to first separation attempt was 1 day (IQR 0-4), and 1013 (22·4%) patients had a delay in initiating first separation of 5 or more days. Of the 4523 (77·1%) patients with separation attempts, 2927 (64·7%) had a short wean (≤1 day), 457 (10·1%) had intermediate weaning (2-6 days), 433 (9·6%) required prolonged weaning (≥7 days), and 706 (15·6%) had weaning failure. Higher sedation scores were independently associated with delayed initiation of weaning. Delayed initiation of weaning and higher sedation scores were independently associated with weaning failure. 1742 (31·8%) of 5479 patients died in the intensive care unit and 2095 (38·3%) of 5465 patients died in hospital. In critically ill patients receiving at least 2 days of invasive mechanical ventilation, only 65% were weaned at 90 days. A better understanding of factors that delay the weaning process, such as delays in weaning initiation or excessive sedation levels, might improve weaning success rates. European Society of Intensive Care Medicine, European Respiratory Society

    Spontaneous-Breathing Trials with Pressure-Support Ventilation or a T-Piece

    No full text
    International audienceBackground: Spontaneous-breathing trials can be performed with the use of either pressure-support ventilation (PSV) or a T-piece. Whether PSV trials may result in a shorter time to tracheal extubation than T-piece trials, without resulting in a higher risk of reintubation, among patients who have a high risk of extubation failure is unknown.Methods: In this multicenter, open-label trial, we randomly assigned patients who had a high risk of extubation failure (i.e., were &gt;65 years of age or had an underlying chronic cardiac or respiratory disease) to undergo spontaneous-breathing trials performed with the use of either PSV (with a pressure-support level of 8 cm of water and no positive end-expiratory pressure) or a T-piece. The primary outcome was the total time without exposure to invasive ventilation (reported as the number of ventilator-free days) at day 28 after the initial spontaneous-breathing trial. Secondary outcomes included extubation within 24 hours and extubation within 7 days after the initial spontaneous-breathing trial, as well as reintubation within 7 days after extubation.Results: A total of 969 patients (484 in the PSV group and 485 in the T-piece group) were included in the analysis. At day 28, the median number of ventilator-free days was 27 (interquartile range, 24 to 27) in the PSV group and 27 (interquartile range, 23 to 27) in the T-piece group (difference, 0 days; 95% confidence interval [CI], -0.5 to 1; P = 0.31). Extubation was performed within 24 hours in 376 patients (77.7%) in the PSV group and in 350 patients (72.2%) in the T-piece group (difference, 5.5 percentage points; 95% CI, 0.01 to 10.9), and extubation was performed within 7 days in 473 patients (97.7%) and 458 patients (94.4%), respectively (difference, 3.3 percentage points; 95% CI, 0.8 to 5.9). Reintubation was performed in 72 of 481 patients (14.9%) in the PSV group and in 65 of 477 patients (13.6%) in the T-piece group (difference, 1.3 percentage points; 95% CI, -3.1 to 5.8). Cardiac or respiratory arrest was a reason for reintubation in 9 patients (3 in the PSV group and 6 in the T-piece group).Conclusions: Among patients who had a high risk of extubation failure, spontaneous-breathing trials performed with PSV did not result in significantly more ventilator-free days at day 28 than spontaneous-breathing trials performed with a T-piece. (Supported by the French Ministry of Health; TIP-EX ClinicalTrials.gov number, NCT04227639.)

    Spontaneous-Breathing Trials with Pressure-Support Ventilation or a T-Piece

    No full text
    International audienceBackground: Spontaneous-breathing trials can be performed with the use of either pressure-support ventilation (PSV) or a T-piece. Whether PSV trials may result in a shorter time to tracheal extubation than T-piece trials, without resulting in a higher risk of reintubation, among patients who have a high risk of extubation failure is unknown.Methods: In this multicenter, open-label trial, we randomly assigned patients who had a high risk of extubation failure (i.e., were &gt;65 years of age or had an underlying chronic cardiac or respiratory disease) to undergo spontaneous-breathing trials performed with the use of either PSV (with a pressure-support level of 8 cm of water and no positive end-expiratory pressure) or a T-piece. The primary outcome was the total time without exposure to invasive ventilation (reported as the number of ventilator-free days) at day 28 after the initial spontaneous-breathing trial. Secondary outcomes included extubation within 24 hours and extubation within 7 days after the initial spontaneous-breathing trial, as well as reintubation within 7 days after extubation.Results: A total of 969 patients (484 in the PSV group and 485 in the T-piece group) were included in the analysis. At day 28, the median number of ventilator-free days was 27 (interquartile range, 24 to 27) in the PSV group and 27 (interquartile range, 23 to 27) in the T-piece group (difference, 0 days; 95% confidence interval [CI], -0.5 to 1; P = 0.31). Extubation was performed within 24 hours in 376 patients (77.7%) in the PSV group and in 350 patients (72.2%) in the T-piece group (difference, 5.5 percentage points; 95% CI, 0.01 to 10.9), and extubation was performed within 7 days in 473 patients (97.7%) and 458 patients (94.4%), respectively (difference, 3.3 percentage points; 95% CI, 0.8 to 5.9). Reintubation was performed in 72 of 481 patients (14.9%) in the PSV group and in 65 of 477 patients (13.6%) in the T-piece group (difference, 1.3 percentage points; 95% CI, -3.1 to 5.8). Cardiac or respiratory arrest was a reason for reintubation in 9 patients (3 in the PSV group and 6 in the T-piece group).Conclusions: Among patients who had a high risk of extubation failure, spontaneous-breathing trials performed with PSV did not result in significantly more ventilator-free days at day 28 than spontaneous-breathing trials performed with a T-piece. (Supported by the French Ministry of Health; TIP-EX ClinicalTrials.gov number, NCT04227639.)
    corecore