468 research outputs found

    Dynamic Exponent of t-J and t-J-W Model

    Full text link
    Drude weight of optical conductivity is calculated at zero temperature by exact diagonalization for the two-dimensional t-J model with the two-particle term, WW. For the ordinary t-J model with WW=0, the scaling of the Drude weight Dδ2D \propto \delta^2 for small doping concentration δ\delta is obtained, which indicates anomalous dynamic exponent zz=4 of the Mott transition. When WW is switched on, the dynamic exponent recovers its conventional value zz=2. This corresponds to an incoherent-to-coherent transition associated with the switching of the two-particle transfer.Comment: LaTeX, JPSJ-style, 4 pages, 5 eps files, to appear in J. Phys. Soc. Jpn. vol.67, No.6 (1998

    Superconductivity and Pseudogap in Quasi-Two-Dimensional Metals around the Antiferromagnetic Quantum Critical Point

    Full text link
    Spin fluctuations (SF) and SF-mediated superconductivity (SC) in quasi-two-dimensional metals around the antiferrromagnetic (AF) quantum critical point (QCP) are investigated by using the self-consistent renormalization theory for SF and the strong coupling theory for SC. We introduce a parameter y0 as a measure for the distance from the AFQCP which is approximately proportional to (x-xc), x being the electron (e) or hole (h) doping concentration to the half-filled band and xc being the value at the AFQCP. We present phase diagrams in the T-y0 plane including contour maps of the AF correlation length and AF and SC transition temperatures TN and Tc, respectively. The Tc curve is dome-shaped with a maximum at around the AFQCP. The calculated one-electron spectral density shows a pseudogap in the high-density-of-states region near (pi,0) below around a certain temperature T* and gives a contour map at the Fermi energy reminiscent of the Fermi arc. These results are discussed in comparison with e- and h-doped high-Tc cuprates.Comment: 5 pages, 3 figure

    Direct Calculation of Spin-Stiffness for Spin-1/2 Heisenberg Models

    Full text link
    The spin-stiffness of frustrated spin-1/2 Heisenberg models in one and two dimensions is computed for the first time by exact diagonalizations on small clusters that implement spin-dependent twisted boundary conditions. Finite-size extrapolation to the thermodynamic limit yields a value of 0.14±0.010.14\pm 0.01 for the spin-stiffness of the unfrustrated planar antiferromagnet. We also present a general discussion of the linear-response theory for spin-twists, which ultimately leads to the moment sum-rule.Comment: 11 pgs, TeX, LA-UR-94-94 (to be published in Phys. Rev. B

    From local to nonlocal Fermi liquid in doped antiferromagnets

    Full text link
    The variation of single-particle spectral functions with doping is studied numerically within the t-J model. It is shown that corresponding self energies change from local ones at the intermediate doping to strongly nonlocal ones for a weakly doped antiferromagnet. The nonlocality shows up most clearly in the pseudogap emerging in the density of states, due to the onset of short-range antiferromagnetic correlations.Comment: 4 pages, 3 Postscript figures, revtex, submitted to Phys.Rev.Let

    Hidden spin-current conservation in 2d Fermi liquids

    Get PDF
    We report the existence of regimes of the two dimensional Fermi liquid that show unusual conservation of the spin current and may be tuned by varying some parameter like the density of fermions. We show that for reasonable models of the effective interaction the spin current may be conserved in general in 2d, not only for a particular regime. Low temperature spin waves propagate distinctively in these regimes and entirely new ``spin-acoustic'' modes are predicted for scattering-dominated temperature ranges. These new high-temperature propagating spin waves provide a clear signature for the experimental search of such regimes.Comment: 4 pages, no figures, revised version, accepted for pub. in the PR

    Prediction of preterm birth with and without preeclampsia using mid-pregnancy immune and growth-related molecular factors and maternal characteristics.

    Get PDF
    OBJECTIVE:To evaluate if mid-pregnancy immune and growth-related molecular factors predict preterm birth (PTB) with and without (±) preeclampsia. STUDY DESIGN:Included were 400 women with singleton deliveries in California in 2009-2010 (200 PTB and 200 term) divided into training and testing samples at a 2:1 ratio. Sixty-three markers were tested in 15-20 serum samples using multiplex technology. Linear discriminate analysis was used to create a discriminate function. Model performance was assessed using area under the receiver operating characteristic curve (AUC). RESULTS:Twenty-five serum biomarkers along with maternal age <34 years and poverty status identified >80% of women with PTB ± preeclampsia with best performance in women with preterm preeclampsia (AUC = 0.889, 95% confidence interval (0.822-0.959) training; 0.883 (0.804-0.963) testing). CONCLUSION:Together with maternal age and poverty status, mid-pregnancy immune and growth factors reliably identified most women who went on to have a PTB ± preeclampsia

    Perceptual judgment and saccadic behavior in a spatial distortion with briefly presented stimuli.

    Get PDF
    When observers are asked to localize the peripheral position of a small probe with respect to the mid-position of a spatially extended comparison stimulus, they tend to judge the probe as being more peripheral than the mid-position of the comparison stimulus. This relative mislocalization seems to emerge from differences in absolute localization, that is the comparison stimulus is localized more towards the fovea than the probe. The present study compared saccadic behaviour and relative localization judgements in three experiments and determined the quantitative relationship between both measures. The results showed corresponding effects in localization errors and saccadic behaviour. Moreover, it was possible to estimate the amount of the relative mislocalization by means of the saccadic amplitude

    Smooth Pursuit Eye Movements Improve Temporal Resolution for Color Perception

    Get PDF
    Human observers see a single mixed color (yellow) when different colors (red and green) rapidly alternate. Accumulating evidence suggests that the critical temporal frequency beyond which chromatic fusion occurs does not simply reflect the temporal limit of peripheral encoding. However, it remains poorly understood how the central processing controls the fusion frequency. Here we show that the fusion frequency can be elevated by extra-retinal signals during smooth pursuit. This eye movement can keep the image of a moving target in the fovea, but it also introduces a backward retinal sweep of the stationary background pattern. We found that the fusion frequency was higher when retinal color changes were generated by pursuit-induced background motions than when the same retinal color changes were generated by object motions during eye fixation. This temporal improvement cannot be ascribed to a general increase in contrast gain of specific neural mechanisms during pursuit, since the improvement was not observed with a pattern flickering without changing position on the retina or with a pattern moving in the direction opposite to the background motion during pursuit. Our findings indicate that chromatic fusion is controlled by a cortical mechanism that suppresses motion blur. A plausible mechanism is that eye-movement signals change spatiotemporal trajectories along which color signals are integrated so as to reduce chromatic integration at the same locations (i.e., along stationary trajectories) on the retina that normally causes retinal blur during fixation

    Feeling Bad and Looking Worse: Negative Affect Is Associated with Reduced Perceptions of Face-Healthiness

    Get PDF
    Some people perceive themselves to look more, or less attractive than they are in reality. We investigated the role of emotions in enhancement and derogation effects; specifically, whether the propensity to experience positive and negative emotions affects how healthy we perceive our own face to look and how we judge ourselves against others. A psychophysical method was used to measure healthiness of self-image and social comparisons of healthiness. Participants who self-reported high positive (N = 20) or negative affectivity (N = 20) judged themselves against healthy (red-tinged) and unhealthy looking (green-tinged) versions of their own and stranger’s faces. An adaptive staircase procedure was used to measure perceptual thresholds. Participants high in positive affectivity were un-biased in their face health judgement. Participants high in negative affectivity on the other hand, judged themselves as equivalent to less healthy looking versions of their own face and a stranger’s face. Affective traits modulated self-image and social comparisons of healthiness. Face health judgement was also related to physical symptom perception and self-esteem; high physical symptom reports were associated a less healthy self-image and high self-reported (but not implicit) self-esteem was associated with more favourable social comparisons of healthiness. Subject to further validation, our novel face health judgement task could have utility as a perceptual measure of well-being. We are currently investigating whether face health judgement is sensitive to laboratory manipulations of mood

    Genetic Associations with Gestational Duration and Spontaneous Preterm Birth

    Get PDF
    BACKGROUND Despite evidence that genetic factors contribute to the duration of gestation and the risk of preterm birth, robust associations with genetic variants have not been identified. We used large data sets that included the gestational duration to determine possible genetic associations. METHODS We performed a genomewide association study in a discovery set of samples obtained from 43,568 women of European ancestry using gestational duration as a continuous trait and term or preterm (<37 weeks) birth as a dichotomous outcome. We used samples from three Nordic data sets (involving a total of 8643 women) to test for replication of genomic loci that had significant genomewide association (P<5.0x10(-8)) or an association with suggestive significance (P<1.0x10(-6)) in the discovery set. RESULTS In the discovery and replication data sets, four loci (EBF1, EEFSEC, AGTR2, and WNT4) were significantly associated with gestational duration. Functional analysis showed that an implicated variant in WNT4 alters the binding of the estrogen receptor. The association between variants in ADCY5 and RAP2C and gestational duration had suggestive significance in the discovery set and significant evidence of association in the replication sets; these variants also showed genomewide significance in a joint analysis. Common variants in EBF1, EEFSEC, and AGTR2 showed association with preterm birth with genomewide significance. An analysis of mother-infant dyads suggested that these variants act at the level of the maternal genome. CONCLUSIONS In this genomewide association study, we found that variants at the EBF1, EEFSEC, AGTR2, WNT4, ADCY5, and RAP2C loci were associated with gestational duration and variants at the EBF1, EEFSEC, and AGTR2 loci with preterm birth. Previously established roles of these genes in uterine development, maternal nutrition, and vascular control support their mechanistic involvement.Peer reviewe
    corecore