231 research outputs found

    Lights, Camera, Lawsuit

    Get PDF
    As the speed of Internet access improves, the film industry will need to explore its options for eliminating the downloading of digital movie files. After examining the successes and failures of the music industry in its battle with peer-to-peer networks, the film industry has begun to follow its predecessor. However, the nature of film as an entertainment medium is quite different than that of music. As a result, the film industry could implement creative solutions to this problem that would not have been available to the music industry. A recent study shows that most films available on the Internet have been leaked by industry insiders. By implementing an increasingly publicized use of trade secret litigation, the film industry could take a tough and effective stance against the digital dragon

    Lights, Camera, Lawsuit

    Get PDF
    As the speed of Internet access improves, the film industry will need to explore its options for eliminating the downloading of digital movie files. After examining the successes and failures of the music industry in its battle with peer-to-peer networks, the film industry has begun to follow its predecessor. However, the nature of film as an entertainment medium is quite different than that of music. As a result, the film industry could implement creative solutions to this problem that would not have been available to the music industry. A recent study shows that most films available on the Internet have been leaked by industry insiders. By implementing an increasingly publicized use of trade secret litigation, the film industry could take a tough and effective stance against the digital dragon

    Heterogeneous nucleation of the primary phase in the rapid solidification of Al-4.5wt%Cu alloy droplet

    No full text
    International audienceThis paper reports on rapid solidification of Al-Cu alloys. A heterogeneous nucleation/growth model coupled with a thermal model of a falling droplet through a stagnant gas was developed. The primary undercooling as well as the number of nucleation points was compared with Al-Cu alloy droplets produced by Impulse Atomization (IA). Based on experimental results from Neutron Diffraction, secondary (eutectic) phases were obtained. Then, primary and secondary undercoolings were estimated using the metastable extensions of solidus and liquidus lines calculated by Thermo-Calc. Moreover, Synchrotron X-ray micro-tomography has been performed on Al-4.5wt%Cu droplets. The undercoolings are in good agreement. Results also evidence the presence of one nucleation point and are in agreement with the experimental observations. 1. Introduction Manufacturing of most metallic alloy products involves solidification at some stage. Mechanical properties of these products are generally related to their solidification microstructures. Depending on the final application of a product, a certain type of microstructure is more appropriate compared to another. For a product that requires directional properties, a microstructure of columnar grains is needed while isotropic properties are satisfied with an equiaxed structure. Generally, post-processing of the solidified materials is required to obtain the final product with desired properties. These post-solidification treatments are generally time-consuming and therefore increase the production cost without fully eliminating solidification related defects such as segregation. Therefore, it is important to understand all the dynamics involved in the formation of solidification microstructures in order to control the properties of the final products. As dendrites growth from an undercooled melt depends a great deal on the nucleation undercooling. Therefore, determination of undercooling and the resulting growth rate, recalescence, microsegregation/phase fraction and grain size is very important. Al-Cu alloys (4.5, 5, 10 and 17 wt% Cu) have been produced by IA and the last three compositions were analysed in our previous papers [1, 2]. IA is a single fluid atomization technique that is capable of producing droplets of controlled size having a relatively narrow distribution and a predictable cooling rate. The alloys (350 to 450g) were melted in a graphite crucible by means of an induction furnace and atomized at 850ÂșC in an almost oxygen free chamber (10ppm) under Nitrogen, Helium or Argon atmospheres. The atomized droplets rapidly solidify during their fall by losing heat to th

    Unsupervised Medical Image Translation with Adversarial Diffusion Models

    Full text link
    Imputation of missing images via source-to-target modality translation can improve diversity in medical imaging protocols. A pervasive approach for synthesizing target images involves one-shot mapping through generative adversarial networks (GAN). Yet, GAN models that implicitly characterize the image distribution can suffer from limited sample fidelity. Here, we propose a novel method based on adversarial diffusion modeling, SynDiff, for improved performance in medical image translation. To capture a direct correlate of the image distribution, SynDiff leverages a conditional diffusion process that progressively maps noise and source images onto the target image. For fast and accurate image sampling during inference, large diffusion steps are taken with adversarial projections in the reverse diffusion direction. To enable training on unpaired datasets, a cycle-consistent architecture is devised with coupled diffusive and non-diffusive modules that bilaterally translate between two modalities. Extensive assessments are reported on the utility of SynDiff against competing GAN and diffusion models in multi-contrast MRI and MRI-CT translation. Our demonstrations indicate that SynDiff offers quantitatively and qualitatively superior performance against competing baselines.Comment: M. Ozbey and O. Dalmaz contributed equally to this stud

    Enhanced fluctuations of the tunneling density of states near bottoms of Landau bands measured by a local spectrometer

    Full text link
    We have found that the local density of states fluctuations (LDOSF) in a disordered metal, detected using an impurity in the barrier as a spectrometer, undergo enhanced (with respect to SdH and dHvA effects) oscillations in strong magnetic fields, omega _c\tau > 1. We attribute this to the dominant role of the states near bottoms of Landau bands which give the major contribution to the LDOSF and are most strongly affected by disorder. We also demonstrate that in intermediate fields the LDOSF increase with B in accordance with the results obtained in the diffusion approximation.Comment: 4 pages, 4 figure

    Learning Fourier-Constrained Diffusion Bridges for MRI Reconstruction

    Full text link
    Recent years have witnessed a surge in deep generative models for accelerated MRI reconstruction. Diffusion priors in particular have gained traction with their superior representational fidelity and diversity. Instead of the target transformation from undersampled to fully-sampled data, common diffusion priors are trained to learn a multi-step transformation from Gaussian noise onto fully-sampled data. During inference, data-fidelity projections are injected in between reverse diffusion steps to reach a compromise solution within the span of both the diffusion prior and the imaging operator. Unfortunately, suboptimal solutions can arise as the normality assumption of the diffusion prior causes divergence between learned and target transformations. To address this limitation, here we introduce the first diffusion bridge for accelerated MRI reconstruction. The proposed Fourier-constrained diffusion bridge (FDB) leverages a generalized process to transform between undersampled and fully-sampled data via random noise addition and random frequency removal as degradation operators. Unlike common diffusion priors that use an asymptotic endpoint based on Gaussian noise, FDB captures a transformation between finite endpoints where the initial endpoint is based on moderate degradation of fully-sampled data. Demonstrations on brain MRI indicate that FDB outperforms state-of-the-art reconstruction methods including conventional diffusion priors

    Theory of Banana Liquid Crystal Phases and Phase Transitions

    Full text link
    We study phases and phase transitions that can take place in the newly discovered banana (bow-shaped or bent-core) liquid crystal molecules. We show that to completely characterize phases exhibited by such bent-core molecules a third-rank tensor TijkT^{ijk} order parameter is necessary in addition to the vector and the nematic (second-rank) tensor order parameters. We present an exhaustive list of possible liquid phases, characterizing them by their space-symmetry group and order parameters, and catalog the universality classes of the corresponding phase transitions that we expect to take place in such bent-core molecular liquid crystals. In addition to the conventional liquid-crystal phases such as the nematic phase, we predict the existence of novel liquid phases, including the spontaneously chiral nematic (NT+2)∗(N_T + 2)^* and chiral polar (VT+2)∗(V_T + 2)^* phases, the orientationally-ordered but optically isotropic tetrahedratic TT phase, and a novel nematic NTN_T phase with D2dD_{2d} symmetry that is neither uniaxial nor biaxial. Interestingly, the Isotropic-Tetrahedratic transition is {\em continuous} in mean-field theory, but is likely driven first-order by thermal fluctuations. We conclude with a discussion of smectic analogs of these phases and their experimental signatures.Comment: 28 pgs. RevTex, 32 eps figures, submitted to Phys. Rev.

    Stem Cell Res

    Get PDF
    Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder of the liver metabolism due to functional deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). AGT deficiency results in overproduction of oxalate which complexes with calcium to form insoluble calcium-oxalate salts in urinary tracts, ultimately leading to end-stage renal disease. Currently, the only curative treatment for PH1 is combined liver-kidney transplantation, which is limited by donor organ shortage and lifelong requirement for immunosuppression. Transplantation of genetically modified autologous hepatocytes is an attractive therapeutic option for PH1. However, the use of fresh primary hepatocytes suffers from limitations such as organ availability, insufficient cell proliferation, loss of function, and the risk of immune rejection. We developed patient-specific induced pluripotent stem cells (PH1-iPSCs) free of reprogramming factors as a source of renewable and genetically defined autologous PH1-hepatocytes. We then investigated additive gene therapy using a lentiviral vector encoding wild-type AGT under the control of the liver-specific transthyretin promoter. Genetically modified PH1-iPSCs successfully provided hepatocyte-like cells (HLCs) that exhibited significant AGT expression at both RNA and protein levels after liver-specific differentiation process. These results pave the way for cell-based therapy of PH1 by transplantation of genetically modified autologous HLCs derived from patient-specific iPSCs
    • 

    corecore