42 research outputs found

    On the vertical equilibrium of the local Galactic disk and the search for disk dark matter

    Full text link
    Estimates of the dynamical surface mass density at the solar Galactocentric distance are commonly derived assuming that the disk is in vertical equilibrium with the Galactic potential. This assumption has recently been called into question, based on the claim that the ratio between the kinetic and the gravitational energy in such solutions is a factor of 3 larger than required if Virial equilibrium is to hold. Here we show that this ratio between energies was overerestimated and that the disk solutions are likely to be in Virial equilibrium after all. We additionally demonstrate, using one-dimensional numerical simulations, that the disks are indeed in equilibrium. Hence, given the uncertainties, we find no reason to cast doubt on the steady-state solutions which are traditionally used to measure the matter density of the disk.Comment: 6 pages, 2 figures, accepted for publication in ApJ Letter

    The shape of "dark matter" halos in disc galaxies according to the modified dynamics

    Full text link
    Analyses of halo shapes for disc galaxies are said to give incongruous results. I point out that the modified dynamics (MOND) predicts for disc galaxies a distribution of fictitious dark matter that comprises two components: a pure disc and a rounder halo. The former dominates the true disc in regions of small accelerations, where it controls the z-dynamics in the disc (disc flaring etc.); it has a finite total mass. It also dominates the round component near the centre where the geometry is nearly planar. The second component controls motions far from the plane, has a total enclosed mass that diverges linearly with radius, and determines the rotation curve at large radii. Its ellipticity may be appreciable at small radii but vanishes asymptotically. This prediction of MOND differs from what one expects from galaxy-formation scenarios with dark matter. Analyses to date, which, as they do, assume one component--usually with a constant ellipticity, perforce give conflicting results for the best-value ellipticity, depending on whether they probe the disc or the sphere, small radii or large ones.Comment: 8 page

    The line-of-sight warp of the spiral galaxy ESO 123-G23

    Get PDF
    We present 3-D modelling of the distribution and kinematics of the neutral hydrogen in the spiral galaxy ESO 123-G23. The optical appearance of this galaxy is an almost perfectly edge-on disk, while the neutral hydrogen is found to extend vertically out to about 15 kpc on either side of the galactic plane. The HI layer and the major features of the HI data cube can be successfully explained by a model dominated by a strong (about 30 degrees) line-of-sight warp. Other models were tried, including a flare model and a two-component model, but they clearly do not reproduce the data. This is the first unambiguous detection of a galactic warp that has the maximum deviation from the central plane almost along the line-of-sight. No evidence for the presence of any companion galaxy is found in the HI data cube. Line-of-sight warps in edge-on galaxies are probably frequent, but escape detection as they are too weak. Moreover they may easily be mistaken as flares or 'thick disks'. A 3-D modelling of the HI layer as the one presented here is needed in order to distinguish between these possibilities.Comment: 5 pages, 5 figures, accepted by A&

    The Flattened Dark Matter Halo of M31 as Deduced from the Observed HI Scale Heights

    Get PDF
    In this paper, we use the outer-galactic HI scale height data as well as the observed rotation curve as constraints to determine the halo density distribution of the Andromeda galaxy (M31). We model the galaxy as a gravitationally-coupled system of stars and gas, responding to the external force-field of a known Hernquist bulge and the dark matter halo, the density profile of the latter being characterized by four free parameters. The parameter space of the halo is optimized so as to match the observed HI thickness distribution as well as the rotation curve on an equal footing, unlike the previous studies of M31 which were based on rotation curves alone. We show that an oblate halo, with an isothermal density profile, provides the best fit to the observed data. This gives a central density of 0.011 M_sun /pc^3, a core radius of 21 kpc, and an axis ratio of 0.4. The main result from this work is the flattened dark matter halo for M31, which is required to match the outer galactic HI scale height data. Interestingly, such flattened halos lie at the most oblate end of the distribution of halo shapes found in recent cosmological simulations.Comment: 21 pages, 6 figures, accepted for publication in the Astrophysical Journa

    Formation of polar ring galaxies

    Get PDF
    Polar ring galaxies are peculiar systems in which a gas rich, nearly polar ring surrounds an early-type or elliptical host galaxy. Two formation scenarios for these objects have been proposed: they are thought to form either in major galaxy mergers or by tidal accretion of the polar material from a gas rich donor galaxy. Both scenarios are studied through N-body simulations including gas dynamics and star formation. Constraints on physical parameters are drawn out, in order to determine which scenario is the most likely to occur. Polar ring galaxies from each scenario are compared with observations and we discuss whether the accretion scenario and the merging scenario account for observational properties of polar ring galaxies. The conclusion of this study is that the accretion scenario is both the most likely and the most supported by observations. Even if the merging scenario is rather robust, most polar ring galaxies are shown to be the result of tidal gas accretion events.Comment: Accepted for publication in A&A. 20 pages, 14 figures. The resolution of several figures has been reduced in this versio

    The cold gaseous halo of NGC 891

    Get PDF
    We present HI observations of the edge-on galaxy NGC 891. These are among the deepest ever performed on an external galaxy. They reveal a huge gaseous halo, much more extended than seen previously and containing almost 30 % of the HI. This HI halo shows structures on various scales. On one side, there is a filament extending (in projection) up to 22 kpc vertically from the disk. Small (M_HI ~ 10^6 Msol) halo clouds, some with forbidden (apparently counter-rotating) velocities, are also detected. The overall kinematics of the halo gas is characterized by differential rotation lagging with respect to that of the disk. The lag, more pronounced at small radii, increases with height from the plane. There is evidence that a significant fraction of the halo is due to a galactic fountain. Accretion from intergalactic space may also play a role in building up the halo and providing low angular momentum material needed to account for the observed rotation lag. The long HI filament and the counter-rotating clouds may be direct evidence of such accretion.Comment: Accepted for publication in The Astronomical Journal. High-resolution version available at http://www.astron.nl/~oosterlo/n891Pape

    Great Circle tidal streams: evidence for a nearly spherical massive dark halo around the Milky Way

    Get PDF
    An all high-latitude sky survey for cool carbon giant stars in the Galactic halo has revealed 75 such stars, of which the majority are new detections. Of these, more than half are clustered on a Great Circle on the sky which intersects the center of Sagittarius dwarf galaxy (Sgr) and is parallel to its proper motion vector, while many of the remainder are outlying Magellanic Cloud C-stars. A pole-count analysis of the carbon star distribution clearly indicates that the Great Circle stream we have isolated is statistically significant, being a 5-6 sigma over-density. These two arguments strongly support our conclusion that a large fraction of the Halo carbon stars originated in Sgr. The stream orbits the Galaxy between the present location of Sgr, 16 kpc from the Galactic center, and the most distant stream carbon star, at ~60 kpc. It follows neither a polar nor a Galactic plane orbit, so that a large range in both Galactic R and z distances are probed. That the stream is observed as a Great Circle indicates that the Galaxy does not exert a significant torque upon the stream, so the Galactic potential must be nearly spherical in the regions probed by the stream. We present N-body experiments simulating this disruption process as a function of the distribution of mass in the Galactic halo. A likelihood analysis shows that, in the Galactocentric distance range 16 kpc < R < 60 kpc, the dark halo is most likely almost spherical. We rule out, at high confidence levels, the possibility that the Halo is significantly oblate, with isodensity contours of aspect q_m < 0.7. This result is quite unexpected and contests currently popular galaxy formation models. (Abridged)Comment: 26 pages, 13 figures (6 in color, 8 chunky due to PS compression), minor revisions, accepted by Ap

    Periodic orbits in warped disk

    Get PDF
    It is often assumed that a warped galaxy can be modeled by a set of rings. This paper verifies numerically the validity of this assumption by the study of periodic orbits populating a heavy self-gravitating warped disk. The phase space structure of a warped model reveals that the circular periodic orbits of a flat disk are transformed in quasi annular periodic orbits which conserve their stability. This lets us also explore the problem of the persistence of a large outer warp. In particular, the consistency of its orbits with the density distribution is checked as a function of the pattern speed.Comment: 9 pages, including 11 figures. Accepted for publication in A&
    corecore