214 research outputs found

    Approaches to calculate the dielectric function of ZnO around the band gap

    Get PDF
    Being one of the most sensitive methods for optical thin film metrology ellipsometry is widely used for the characterization of zinc oxide (ZnO), a key material for optoelectronics, photovoltaics, and printable electronics and in a range of critical applications. The dielectric function of ZnO has a special feature around the band gap dominated by a relatively sharp absorption feature and an excitonic peak. In this work we summarize and compare direct (point-by-point) and parametric approaches for the description of the dielectric function. We also investigate how the choice of the wavelength range influences the result, the fit quality and the sensitivity. Results on ZnO layers prepared by sputtering are presented

    Characterization of ultra-shallow aluminum implants in silicon by grazing incidence and grazing emission X-ray fluorescence spectroscopy

    Get PDF
    In this work two synchrotron radiation-based depth-sensitive X-ray fluorescence techniques, grazing incidence X-ray fluorescence (GIXRF) and grazing emission X-ray fluorescence (GEXRF), are compared and their potential for non-destructive depth-profiling applications is investigated. The depth-profiling capabilities of the two methods are illustrated for five aluminum-implanted silicon wafers all having the same implantation dose of 1016 atoms per cm2 but with different implantation energies ranging from 1 keV up to 50 keV. The work was motivated by the ongoing downscaling effort of the microelectronics industry and the resulting need for more sensitive methods for the impurity and dopant depth-profile control. The principles of GIXRF and GEXRF, both based on the refraction of X-rays at the sample surface to enhance the surface-to-bulk ratio of the detected fluorescence signal, are explained. The complementary experimental setups employed at the Physikalisch-Technische Bundesanstalt (PTB) for GIXRF and the University of Fribourg for GEXRF are presented in detail. In particular, for each technique it is shown how the dopant depth profile can be derived from the angular intensity dependence of the Al Kα fluorescence line. The results are compared to theoretical predictions and, for two samples, crosschecked with values obtained from secondary ion mass spectroscopy (SIMS) measurements. A good agreement between the different approaches is found proving that the GIXRF and GEXRF methods can be efficiently employed to extract the dopant depth distribution of ion-implanted samples with good accuracy and over a wide range of implantation energies

    Grazing incidence x ray fluorescence analysis for non destructive determination of In and Ga depth profiles in Cu In,Ga Se2 absorber films

    Get PDF
    Development of highly efficient thin film solar cells involves band gap engineering by tuning their elemental composition with depth. Here we show that grazing incidence X ray fluorescence GIXRF analysis using monochromatic synchrotron radiation and well characterized instrumentation is suitable for a non destructive and reference free analysis of compositional depth profiles in thin films. Variation of the incidence angle provides quantitative access to the in depth distribution of the elements, which are retrieved from measured fluorescence intensities by modeling parameterized gradients and fitting calculated to measured fluorescence intensities. Our results show that double Ga gradients in Cu In1 x,Gax Se2 can be resolved by GIXR

    A multipurpose experimental facility for advanced X-ray Spectrometry applications

    Get PDF
    Ponencia presentada en la European Conference on X-Ray Spectrometry (EXRS). 2014Motivation, Ultra High Vacuum Chamber (UHVC) project: To support/enhance the training of scientists/engineers from developing countries in the operation of synchrotron radiation instrumentation; To provide beam time access for R&D projects and hands-on training in SR-XRS based techniques; To promote networking and knowledge sharing; To increase the quality and the competitiveness of the developing countries to apply beam time proposals at SR facilities; To contribute in the further development of XRS techniques in applications with socioeconomicalrelevance (characterization of energy storage/conversion materials, environmental, biological and biomedical applications)Fil: Leani, Juan José. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Leani, Juan José. Nuclear Science and Instrumentation Laboratory, IAEA Laboratories; Austria.Física Atómica, Molecular y Química (física de átomos y moléculas incluyendo colisión, interacción con radiación, resonancia magnética, Moessbauer Efecto.

    Scan Free GEXRF in the Soft X ray Range for the Investigation of Structured Nanosamples

    Get PDF
    Scan free grazing emission X ray fluorescence spectroscopy GEXRF is an established technique for the investigation of the elemental depth profiles of various samples. Recently it has been applied to investigating structured nanosamples in the tender X ray range. However, lighter elements such as oxygen, nitrogen or carbon cannot be efficiently investigated in this energy range, because of the ineffective excitation. Moreover, common CCD detectors are not able to discriminate between fluorescence lines below 1 keV. Oxygen and nitrogen are important components of insulation and passivation layers, for example, in silicon oxide or silicon nitride. In this work, scan free GEXRF is applied in proof of concept measurements for the investigation of lateral ordered 2D nanostructures in the soft X ray range. The sample investigated is a Si3N4 lamellar grating, which represents 2D periodic nanostructures as used in the semiconductor industry. The emerging two dimensional fluorescence patterns are recorded with a CMOS detector. To this end, energy dispersive spectra are obtained via single photon event evaluation. In this way, spatial and therefore angular information is obtained, while discrimination between different photon energies is enabled. The results are compared to calculations of the sample model performed by a Maxwell solver based on the finite elements method. A first measurement is carried out at the UE56 2 PGM 2 beamline at the BESSY II synchrotron radiation facility to demonstrate the feasibility of the method in the soft X ray range. Furthermore, a laser produced plasma source LPP is utilized to investigate the feasibility of this technique in the laboratory. The results from the BESSY II measurements are in good agreement with the simulations and prove the applicability of scan free GEXRF in the soft X ray range for quality control and process engineering of 2D nanostructures. The LPP results illustrate the chances and challenges concerning a transfer of the methodology to the laborator
    • …
    corecore