4,621 research outputs found

    A microrod-resonator Brillouin laser with 240 Hz absolute linewidth

    Get PDF
    We demonstrate an ultralow-noise microrod-resonator based laser that oscillates on the gain supplied by the stimulated Brillouin scattering optical nonlinearity. Microresonator Brillouin lasers are known to offer an outstanding frequency noise floor, which is limited by fundamental thermal fluctuations. Here, we show experimental evidence that thermal effects also dominate the close-to-carrier frequency fluctuations. The 6-mm diameter microrod resonator used in our experiments has a large optical mode area of ~100 {\mu}m2^2, and hence its 10 ms thermal time constant filters the close-to-carrier optical frequency noise. The result is an absolute laser linewidth of 240 Hz with a corresponding white-frequency noise floor of 0.1 Hz2^2/Hz. We explain the steady-state performance of this laser by measurements of its operation state and of its mode detuning and lineshape. Our results highlight a mechanism for noise that is common to many microresonator devices due to the inherent coupling between intracavity power and mode frequency. We demonstrate the ability to reduce this noise through a feedback loop that stabilizes the intracavity power.Comment: 11 pages, 5 figure

    Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation

    Get PDF
    BACKGROUND: Several strains of bacteria have sequenced and annotated genomes, which have been used in conjunction with biochemical and physiological data to reconstruct genome-scale metabolic networks. Such reconstruction amounts to a two-dimensional annotation of the genome. These networks have been analyzed with a constraint-based formalism and a variety of biologically meaningful results have emerged. Staphylococcus aureus is a pathogenic bacterium that has evolved resistance to many antibiotics, representing a significant health care concern. We present the first manually curated elementally and charge balanced genome-scale reconstruction and model of S. aureus' metabolic networks and compute some of its properties. RESULTS: We reconstructed a genome-scale metabolic network of S. aureus strain N315. This reconstruction, termed iSB619, consists of 619 genes that catalyze 640 metabolic reactions. For 91% of the reactions, open reading frames are explicitly linked to proteins and to the reaction. All but three of the metabolic reactions are both charge and elementally balanced. The reaction list is the most complete to date for this pathogen. When the capabilities of the reconstructed network were analyzed in the context of maximal growth, we formed hypotheses regarding growth requirements, the efficiency of growth on different carbon sources, and potential drug targets. These hypotheses can be tested experimentally and the data gathered can be used to improve subsequent versions of the reconstruction. CONCLUSION: iSB619 represents comprehensive biochemically and genetically structured information about the metabolism of S. aureus to date. The reconstructed metabolic network can be used to predict cellular phenotypes and thus advance our understanding of a troublesome pathogen

    Metabolite coupling in genome-scale metabolic networks

    Get PDF
    BACKGROUND: Biochemically detailed stoichiometric matrices have now been reconstructed for various bacteria, yeast, and for the human cardiac mitochondrion based on genomic and proteomic data. These networks have been manually curated based on legacy data and elementally and charge balanced. Comparative analysis of these well curated networks is now possible. Pairs of metabolites often appear together in several network reactions, linking them topologically. This co-occurrence of pairs of metabolites in metabolic reactions is termed herein "metabolite coupling." These metabolite pairs can be directly computed from the stoichiometric matrix, S. Metabolite coupling is derived from the matrix ƜƜ(T), whose off-diagonal elements indicate the number of reactions in which any two metabolites participate together, where Ɯ is the binary form of S. RESULTS: Metabolite coupling in the studied networks was found to be dominated by a relatively small group of highly interacting pairs of metabolites. As would be expected, metabolites with high individual metabolite connectivity also tended to be those with the highest metabolite coupling, as the most connected metabolites couple more often. For metabolite pairs that are not highly coupled, we show that the number of reactions a pair of metabolites shares across a metabolic network closely approximates a line on a log-log scale. We also show that the preferential coupling of two metabolites with each other is spread across the spectrum of metabolites and is not unique to the most connected metabolites. We provide a measure for determining which metabolite pairs couple more often than would be expected based on their individual connectivity in the network and show that these metabolites often derive their principal biological functions from existing in pairs. Thus, analysis of metabolite coupling provides information beyond that which is found from studying the individual connectivity of individual metabolites. CONCLUSION: The coupling of metabolites is an important topological property of metabolic networks. By computing coupling quantitatively for the first time in genome-scale metabolic networks, we provide insight into the basic structure of these networks

    Is the Compact Source at the Center of Cas A Pulsed?

    Get PDF
    A 50 ksec observation of the Supernova Remnant Cas A was taken using the Chandra X-Ray Observatory High Resolution Camera (HRC) to search for periodic signals from the compact source located near the center. Using the HRC-S in imaging mode, problems with correctly assigning times to events were overcome, allowing the period search to be extended to higher frequencies than possible with previous observations. In an extensive analysis of the HRC data, several possible candidate signals are found using various algorithms, including advanced techniques developed by Ransom to search for low significance periodic signals. Of the candidate periods, none is at a high enough confidence level to be particularly favored over the rest. When combined with other information, however (e.g., spectra, total energetics, and the historical age of the remnant), a 12 ms candidate period seems to be more physically plausible than the others, and we use it for illustrative purposes in discussing the possible properties of a putative neutron star in the remnant. We emphasize that this is not necessarily the true period, and that a follow-up observation, scheduled for the fall of 2001, is required. A 50 ksec Advanced CCD Imaging Spectrometer (ACIS) observation was taken, and analysis of these data for the central object shows that the spectrum is consistent with several forms, and that the emitted X-ray luminosity in the 0.1 -10 keV band is 10^{33}-10^{35}erg cm^{-2}sec^{-1} depending on the spectral model and the interstellar absorption along the line of sight to the source.Comment: 14 pages, 3 figures Submitted to ApJ 2001 June 2

    Leg weld fatigue cracks in anhydrous ammonia nurse tanks

    Get PDF
    In an accident in southwest Iowa, USA in 2012, an anhydrous ammonia nurse tank vented its entire cargo of 5500 L (1500 gallons) of liquid ammonia to the atmosphere. Follow-up study of the failed tank revealed a through-crack along a weld used to connect the tank to its running gear. Side-angle ultrasound examinations were performed on 532 used anhydrous ammonia nurse tanks to measure the locations, sizes, and orientations of flaw indications. The tanks examined had manufacture dates ranging from 1952 to 2011. A total of 83 indications were found in or near the leg welds of 50 of these 532 tanks. Several factors suggest that these indications are fatigue cracks, not the stress corrosion cracks more commonly detected in nurse tanks. These findings suggest that roughly 9% of the 200,000 nurse tanks in the U.S. nurse tank fleet may contain leg-weld fatigue cracks. Nurse tanks are the only large, pressurized packages for hazardous cargo that do not contain manways; thus, their interior walls cannot be inspected for flaws with magnetic particle or fluorescent dye penetrant methods. Since the tank interior is inaccessible, side-angle ultrasound is the only detection method capable of detecting cracks in nurse tanks initiating at both interior and exterior tank surfaces. For this reason, the authors recommend that side-angle ultrasound be considered for use in periodic nurse tank inspections

    The Carbon Content of Intergalactic Gas at z=4.25 and its Evolution Toward z=2.4

    Get PDF
    This paper presents ionization-corrected measurements of the carbon abundance in intergalactic gas at 4.0 < z < 4.5, using spectra of three bright quasars obtained with the MIKE spectrograph on Magellan. By measuring the CIV strength in a sample of 131 discrete HI-selected quasar absorbers with \rho/\bar{\rho}>1.6, we derive a median carbon abundance of [C/H]=-3.55, with lognormal scatter of approximately ~0.8 dex. This median value is a factor of two to three lower than similar measurements made at z~2.4 using CIV and OVI. The strength of evolution is modestly dependent on the choice of UV background spectrum used to make ionization corrections, although our detection of an abundance evolution is generally robust with respect to this model uncertainty. We present a framework for analyzing the effects of spatial fluctuations in the UV ionizing background at frequencies relevant for CIV production. We also explore the effects of reduced flux between 3-4 Rydbergs (as from HeII Lyman series absorption) on our abundance estimates. At HeII line absorption levels similar to published estimates the effects are very small, although a larger optical depth could reduce the strength of the abundance evolution. Our results imply that ~50% of the heavy elements seen in the IGM at z~2.4 were deposited in the 1.3 Gyr between z~4.3 and z~2.4. The total implied mass flux of carbon into the Lyman alpha forest would constitute ~30% of the IMF-weighted carbon yield from known star forming populations over this period.Comment: Accepted for publication in the Astrophysical Journal. 23 pages, 24 figures, 2 table

    Probing the outer edge of an accretion disk : a Her X-1 turn-on observed with RXTE

    Get PDF
    We present the analysis of Rossi X-ray Timing Explorer (RXTE) observations of the turn-on phase of a 35 day cycle of the X-ray binary Her X-1. During the early phases of the turn-on, the energy spectrum is composed of X-rays scattered into the line of sight plus heavily absorbed X-rays. The energy spectra in the 3–17 keV range can be described by a partial covering model, where one of the components is influenced by photoelectric absorption and Thomson scattering in cold material plus an iron emission line at 6.5 keV. In this paper we show the evolution of spectral parameters as well as the evolution of the pulse profile during the turn-on. We describe this evolution using Monte Carlo simulations which self-consistently describe the evolution of the X-ray pulse profile and of the energy spectrum

    Low-noise stimulated Brillouin lasing in a microrod resonator

    Get PDF
    We demonstrate a Brillouin microcavity laser based on a microrod resonator exhibiting a frequency noise of 140 HZ/√Hz at 10 Hz offset. The corresponding laser linewidth is measured to be below 400 Hz

    The Sloan Digital Sky Survey Quasar Lens Search. II. Statistical lens sample from the third data release

    Get PDF
    We report the first results of our systematic search for strongly lensed quasars using the spectroscopically confirmed quasars in the Sloan Digital Sky Survey (SDSS). Among 46,420 quasars from the SDSS Data Release 3 (~4188 deg^2), we select a subsample of 22,683 quasars that are located at redshifts between 0.6 and 2.2 and are brighter than the Galactic extinction-corrected i-band magnitude of 19.1. We identify 220 lens candidates from the quasar subsample, for which we conduct extensive and systematic follow-up observations in optical and near-infrared wavebands, in order to construct a complete lensed quasar sample at image separations between 1" and 20" and flux ratios of faint to bright lensed images larger than 10^(−0.5). We construct a statistical sample of 11 lensed quasars. Ten of these are galaxy-scale lenses with small image separations (~ 1"-2") and one is a large separation (15") system which is produced by a massive cluster of galaxies, representing the first statistical sample of lensed quasars including both galaxy- and cluster-scale lenses. The Data Release 3 spectroscopic quasars contain an additional 11 lensed quasars outside the statistical sample

    SDSS J115517.35+634622.0: A Newly Discovered Gravitationally Lensed Quasar

    Full text link
    We report the discovery of SDSSJ115517.35+634622.0, a previously unknown gravitationally lensed quasar. The lens system exhibits two images of a z=2.89z = 2.89 quasar, with an image separation of 1{\farcs}832 \pm 0.007 . Near-IR imaging of the system reveals the presence of the lensing galaxy between the two quasar images. Based on absorption features seen in the Sloan Digital Sky Survey (SDSS) spectrum, we determine a lens galaxy redshift of z=0.1756z = 0.1756. The lens is rather unusual in that one of the quasar images is only 0{\farcs}22\pm0{\farcs}07 (∌0.1Reff\sim 0.1 R_{\rm eff}) from the center of the lens galaxy and photometric modeling indicates that this image is significantly brighter than predicted by a SIS model. This system was discovered in the course of an ongoing search for strongly lensed quasars in the dataset from the SDSS.Comment: 18 pages, 6 figures. Accepted for publication in A
    • 

    corecore