573 research outputs found

    Transport Activity of the Sodium Bicarbonate Cotransporter NBCe1 Is Enhanced by Different Isoforms of Carbonic Anhydrase

    Get PDF
    Transport metabolons have been discussed between carbonic anhydrase II (CAII) and several membrane transporters. We have now studied different CA isoforms, expressed in Xenopus oocytes alone and together with the electrogenic sodium bicarbonate cotransporter 1 (NBCe1), to determine their catalytic activity and their ability to enhance NBCe1 transport activity. pH measurements in intact oocytes indicated similar activity of CAI, CAII and CAIII, while in vitro CAIII had no measurable activity and CAI only 30% of the activity of CAII. All three CA isoforms increased transport activity of NBCe1, as measured by the transport current and the rate of intracellular sodium rise in oocytes. Two CAII mutants, altered in their intramolecular proton pathway, CAII-H64A and CAII-Y7F, showed significant catalytic activity and also enhanced NBCe1 transport activity. The effect of CAI, CAII, and CAII mutants on NBCe1 activity could be reversed by blocking CA activity with ethoxyzolamide (EZA, 10 ”M), while the effect of the less EZA-sensitive CAIII was not reversed. Our results indicate that different CA isoforms and mutants, even if they show little enzymatic activity in vitro, may display significant catalytic activity in intact cells, and that the ability of CA to enhance NBCe1 transport appears to depend primarily on its catalytic activity

    What does data stewardship mean in physics?

    Get PDF
    This article expands on the considerations on data stewardship in physics the authors have presented as a poster at the “Data Stewardship goes Germany” workshop held in Brunswick in October 2022. We start from the observation that despite the close links between research in physics and scientific computing as a tenet of research data management (RDM), currently, the research data produced by physicists are not as FAIR (findable, accessible, interoperable, and reusable) as they could and should be. Physics research groups in Germany as of now do not feature explicitly designated data stewards. Building on a survey on RDM in physics conducted among researchers in 2020, we lay out a clear case and a mission for more explicitly defined and acknowledged data stewardship in physics. We argue that because of the closeness between data stewardship and genuine research, ample domain knowledge is indispensable: Data stewards in physics should ideally be trained physicists themselves! Data stewards are going to face a heterogeneous research landscape in terms of group size and resources, defined by the pressure to “publish or perish”. We consider that the introduction of data stewardship presents an opportunity to the physics community to self-organize research support infrastructures where they are missing. Data stewards from the physics community would be ideally skilled to transform the existing data handling solutions into the RDM systems needed to achieve a future of FAIR data from physics. We envision them to contribute to scientific projects both as advisors and as active role models of good scientific practice and reproducibility

    Exploring the functionalisation of the thieno[2,3-d]pyrimidinedione core: late stage access to highly substituted 5-carboxamide-6-aryl scaffolds

    Get PDF
    The thieno[2,3-d]pyrimidinedione core is found as a component in a range of pharmaceutically active compounds, however, synthetic approaches to these scaffolds rely on access to functionalised, highly substituted thiophenes. Here we describe a new approach for the preparation of 5-carboxamide-6-aryl analogues that involves a two-step synthesis of the thieno[2,3-d]pyrimidinedione core from a readily available mercaptouracil derivative. Thio-alkylation with ethyl 3-bromopyruvate, followed by cyclisation and dehydration mediated by polyphosphoric acid allowed the scalable synthesis of the thieno[2,3-d] pyrimidinedione unit. The late-stage functionalisation of this core motif via bromination of the thiophene ring and a subsequent Suzuki-Miyaura reaction as the key steps permitted access to a novel library of 5-carboxamide-6-aryl analogues. The physicochemical properties of these compounds were determined, generating an insight into the potential bioavailability of these scaffolds. Based on these results, a selection of the novel 5-carboxamide-6-aryl analogues were tested as lactate uptake inhibitors of monocarboxylate transporters 1, 2 and 4 in Xenopus oocytes

    Three-Dimensional Model for the Human Cl−/HCO3− Exchanger, AE1, by Homology to the E. coli ClC Protein

    Get PDF
    AbstractAE1 mediates electroneutral 1:1 exchange of bicarbonate for chloride across the plasma membrane of erythrocytes and type A cells of the renal collecting duct. No high-resolution structure is available for the AE1 membrane domain, which alone is required for its transport activity. A recent electron microscopy structure of the AE1 membrane domain was proposed to have a similar protein fold to ClC chloride channels. We developed a three-dimensional homology model of the AE1 membrane domain, using the Escherichia coli ClC channel structure as a template. This model agrees well with a long list of biochemically established spatial constraints for AE1. To investigate the AE1 transport mechanism, we created point mutations in regions corresponding to E. coli ClC transport mechanism residues. When expressed in HEK293 cells, several mutants had Cl−/HCO3− exchange rates significantly different from that of wild-type AE1. When further assessed in Xenopus laevis oocytes, there were significant changes in the transport activity of several AE1 point mutants as assessed by changes in pH. None of the mutants, however, added an electrogenic component to AE1 transport activity. This indicates that the AE1 point mutants altered the transport activity of AE1, without changing its electrogenicity and stoichiometry. The homology model successfully identified residues in AE1 that are critical to AE1 transport activity. Thus, we conclude that AE1 has a similar protein fold to ClC chloride channels

    A high-flux BEC source for mobile atom interferometers

    Get PDF
    Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BEC) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a challenging endeavor. Here we report on the realization of a miniaturized setup, generating a flux of 4×1054 \times 10^5 quantum degenerate 87^{87}Rb atoms every 1.6 \,s. Ensembles of 1×1051 \times 10^5 atoms can be produced at a 1 \,Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based BEC experiments while offering significantly higher repetition rates. Additionally, the flux is approaching those of current interferometers employing Raman-type velocity selection of laser-cooled atoms. The compact and robust design allows for mobile operation in a variety of demanding environments and paves the way for transportable high-precision quantum sensors.Comment: 22 pages, 6 figure

    Linear response within the projection-based renormalization method: Many-body corrections beyond the random phase approximation

    Full text link
    The explicit evaluation of linear response coefficients for interacting many-particle systems still poses a considerable challenge to theoreticians. In this work we use a novel many-particle renormalization technique, the so-called projector-based renormalization method, to show how such coefficients can systematically be evaluated. To demonstrate the prospects and power of our approach we consider the dynamical wave-vector dependent spin susceptibility of the two-dimensional Hubbard model and also determine the subsequent magnetic phase diagram close to half-filling. We show that the superior treatment of (Coulomb) correlation and fluctuation effects within the projector-based renormalization method significantly improves the standard random phase approximation results.Comment: 17 pages, 7 figures, revised versio

    Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: a prospective, observational single-center study

    Get PDF
    Background: Efective antimicrobial treatment is key to reduce mortality associated with bacterial sepsis in patients on intensive care units (ICUs). Dose adjustments are often necessary to account for pathophysiological changes or renal replacement therapy. Extracorporeal membrane oxygenation (ECMO) is increasingly being used for the treatment of respiratory and/or cardiac failure. However, it remains unclear whether dose adjustments are necessary to avoid subtherapeutic drug levels in septic patients on ECMO support. Here, we aimed to evaluate and comparatively assess serum concentrations of continuously applied antibiotics in intensive care patients being treated with and without ECMO. Methods: Between October 2018 and December 2019, we prospectively enrolled patients on a pneumological ICU in southwest Germany who received antibiotic treatment with piperacillin/tazobactam, ceftazidime, meropenem, or linezolid. All antibiotics were applied using continuous infusion, and therapeutic drug monitoring of serum concentrations (expressed as mg/L) was carried out using high-performance liquid chromatography. Target concentrations were defned as fourfold above the minimal inhibitory concentration (MIC) of susceptible bacterial isolates, according to EUCAST breakpoints

    Wide-field time-correlated single photon counting-based fluorescence lifetime imaging microscopy

    Get PDF
    Wide-field time-correlated single photon counting detection techniques, where the position and the arrival time of the photons are recorded simultaneously using a camera, have made some advances recently. The technology and instrumentation used for this approach is employed in areas such as nuclear science, mass spectroscopy and positron emission tomography, but here, we discuss some of the wide-field TCSPC methods, for applications in fluorescence microscopy. We describe work by us and others as presented in the Ulitima fast imaging and tracking conference at the Argonne National Laboratory in September 2018, from phosphorescence lifetime imaging (PLIM) microscopy on the microsecond time scale to fluorescence lifetime imaging (FLIM) on the nanosecond time scale, and highlight some applications of these techniques

    Integration of Genome-Wide SNP Data and Gene-Expression Profiles Reveals Six Novel Loci and Regulatory Mechanisms for Amino Acids and Acylcarnitines in Whole Blood

    Get PDF
    Profiling amino acids and acylcarnitines in whole blood spots is a powerful tool in the laboratory diagnosis of several inborn errors of metabolism. Emerging data suggests that altered blood levels of amino acids and acylcarnitines are also associated with common metabolic diseases in adults. Thus, the identification of common genetic determinants for blood metabolites might shed light on pathways contributing to human physiology and common diseases. We applied a targeted mass-spectrometry-based method to analyze whole blood concentrations of 96 amino acids, acylcarnitines and pathway associated metabolite ratios in a Central European cohort of 2, 107 adults and performed genome-wide association (GWA) to identify genetic modifiers of metabolite concentrations. We discovered and replicated six novel loci associated with blood levels of total acylcarnitine, arginine (both on chromosome 6;rs12210538, rs17657775),propionylcarnitine (chromosome 10;rs12779637),2-hydroxyisovalerylcarnitine (chromosome 21;rs1571700),stearoylcarnitine (chromosome 1;rs3811444),and aspartic acid traits (chromosome 8;rs750472). Based on an integrative analysis of expression quantitative trait loci in blood mononuclear cells and correlations between gene expressions and metabolite levels, we provide evidence for putative causative genes: SLC22A16 for total acylcarnitines, ARG1 for arginine, HLCS for 2-hydroxyisovalerylcarnitine, JAM3 for stearoylcarnitine via a trans-effect at chromosome 1, and PPP1R16A for aspartic acid traits. Further, we report replication and provide additional functional evidence for ten loci that have previously been published for metabolites measured in plasma, serum or urine. In conclusion, our integrative analysis of SNP, gene-expression and metabolite data points to novel genetic factors that may be involved in the regulation of human metabolism. At several loci, we provide evidence for metabolite regulation via gene-expression and observed overlaps with GWAS loci for common diseases. These results form a strong rationale for subsequent functional and disease-related studies

    Catalytically inactive carbonic anhydrase-related proteins enhance the transport of lactate by MCT1

    Get PDF
    Carbonic anhydrases (CA) catalyze the reversible hydration of CO2 to protons and bicarbonate and thereby play a fundamental role in the epithelial acid/base transport mechanisms serving fluid secretion and absorption for whole‐body acid/base regulation. The three carbonic anhydrase‐related proteins (CARPs) VIII, X, and XI, however, are catalytically inactive. Previous work has shown that some CA isoforms noncatalytically enhance lactate transport through various monocarboxylate transporters (MCT). Therefore, we examined whether the catalytically inactive CARPs play a role in lactate transport. Here, we report that CARP VIII, X, and XI enhance transport activity of the MCT MCT1 when coexpressed in Xenopus oocytes, as evidenced by the rate of rise in intracellular H+ concentration detected using ion‐sensitive microelectrodes. Based on previous studies, we suggest that CARPs may function as a ‘proton antenna’ for MCT1, to drive proton‐coupled lactate transport across the cell membrane
    • 

    corecore