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Carbonic anhydrases (CA) catalyze the reversible hydration of CO2 to pro-

tons and bicarbonate and thereby play a fundamental role in the epithelial

acid/base transport mechanisms serving fluid secretion and absorption for

whole-body acid/base regulation. The three carbonic anhydrase-related

proteins (CARPs) VIII, X, and XI, however, are catalytically inactive. Pre-

vious work has shown that some CA isoforms noncatalytically enhance lac-

tate transport through various monocarboxylate transporters (MCT).

Therefore, we examined whether the catalytically inactive CARPs play a

role in lactate transport. Here, we report that CARP VIII, X, and XI

enhance transport activity of the MCT MCT1 when coexpressed in Xeno-

pus oocytes, as evidenced by the rate of rise in intracellular H+ concentra-

tion detected using ion-sensitive microelectrodes. Based on previous

studies, we suggest that CARPs may function as a ‘proton antenna’ for

MCT1, to drive proton-coupled lactate transport across the cell membrane.

The monocarboxylate transporter (MCT) family, also

known as SLC16, consists of 14 isoforms [1]. Among

them, MCT1 is ubiquitous and predominantly

expressed in the tissues that require large amounts of

energy, like brain and muscle [2]. In the brain, the

export of lactate by MCT1 is required to provide lac-

tate for the energy metabolism of neurons from astro-

cytes in the glia-neuron lactate shuttle, in which

MCT1 exports lactate from the astrocytes, to be taken

up by neurons through the high-affinity MCT2 [3,4].

This is significant for neuroprotection, especially in

glucose-deprived conditions [5,6]. In addition to the

brain, lactate has also been reported as preferred fuel

under stress/strain conditions in heart and skeletal

muscle, and perhaps lactate also serves as a signaling

molecule in such conditions (reviewed in Ref [7]).

Already moderate physical activity doubled the contri-

bution of lactate for total cardiac energy production in

healthy subjects [8], while heavy exercise (at 200 W)

increased lactate uptake by a factor of four, with a

60% contribution to cardiac energy production [9,10].

Studies on rats demonstrated that increased blood
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lactate levels can have positive effects on heart func-

tion during a septic or hemorrhagic shock [11,12].

In mammals, the major role of alpha-carbonic anhy-

drases (a-CAs) is to catalyze the reversible hydration

of CO2 to HCO�
3 and H+ to regulate pH in a variety

of tissues [13]. The involvement of CAs in epithelial

transport of ions and fluids, in particular in kidneys,

also contributes in regulating the whole-body acid/base

balance. Apart from pH modulation, the a-CAs also

associate with transporter proteins forming transport

metabolons, which facilitate the transport of various

anions across the membrane [14]. This may occur

through equilibration of cotransported HCO�
3 or H+

species. Transport activity of MCTs is facilitated by

various CA isoforms via a mechanism that is indepen-

dent from the enzymes’ catalytic activities [15–27].

Intracellular CAII, but not CAI and CAIII, facilitates

transport activity of MCT1 and MCT4, when heterol-

ogously expressed in Xenopus oocytes [15–20]. CAII-

mediated facilitation of MCT1/4 activity is indepen-

dent from CAII catalytic function, but requires direct

binding of the enzyme to a cluster of three glutamic

acid residues in the transporters’ C-terminal tail

[19,23]. Transport activity of MCT2, which lacks a

CAII binding site, is not facilitated by CAII [18].

However, introduction of three glutamic acid residues

into the MCT2 C-terminal tail allowed binding of

CAII to the transporter and enabled CAII-mediated

facilitation of MCT2 transport activity [23]. Binding of

CAII to the transporter is mediated by CAII-His64

[22]. Interestingly, His64 resembles the central residue

of the CAII intramolecular proton shuttle [28]. It has

been suggested that CAII serves as a ‘proton antenna’

for MCTs, which mediates the rapid exchange of pro-

tons between transporter pore and surrounding proto-

natable residues [17,22,29]. In CAII, proton shuttling

between enzyme and transporter seems to be mediated

by CAII-Glu69 and CAII-Asp72, which form a surface

proton antenna on the enzyme, while CAII-His64

mediates binding to the transporter, but no proton

exchange [22]. CAII does not only facilitate MCT

transport activity in Xenopus oocytes, but can also

drive lactate flux in astrocytes [19] and cancer cells [22]

by noncatalytic function. Transport activity of MCT1,

MCT2, and MCT4 was further shown to be enhanced

by the extracellular CA isoforms CAIV and CAIX

[18,20,21,26,27]. CAIV-mediated facilitation of MCT

transport activity, as expressed in Xenopus oocytes, is

independent from the enzyme’s catalytic activity, but

requires direct binding of CAIV-His88 (the analogue

residue to CAII-His64) to the Ig1 domain of the MCT

chaperons CD147 (MCT1, MCT4) and GP70 (MCT2),

respectively [18,27]. Facilitation of MCT-mediated

lactate flux by CAIX was demonstrated in Xenopus

oocytes and hypoxic breast cancer cells, where the

CAIX-induced increase in lactate transport capacity

supports cell proliferation under hypoxia [21,26]. Pro-

ton shuttling between MCTs and CAIX is partially

mediated by the CAIX proteoglycan-like domain that

is rich in acid residues and might serve as proton

antenna for the transporter [26].

In the present study, we have investigated the possi-

ble role for carbonic anhydrase-related proteins

(CARPs) VIII, X, and XI in the transport of lactate

in association with MCT1. CARPs VIII, X, and XI

are catalytically inactive proteins and are predomi-

nantly expressed in the human brain [30,31]. Because

of the lack of enzymatic activity, the CARPs are

assumed to function through interaction with other

proteins. [32].

In case of CARP VIII, there is a known interaction

with inositol 1,4,5-trisphosphate receptor type 1 to

modulate Ca2+ release from endoplasmic reticulum

into cytoplasm [33]. Several CA8 loss-of-function-asso-

ciated phenotypes of poor motor coordination have

been reported in human, mouse, and zebrafish [34–37],

consistent with CARP VIII being predominantly

expressed in the cerebellum.

Downregulation of CARP Xa or CARP Xb in zeb-

rafish leads to defects in the development of brain and

an ataxic swim pattern, reminiscent of the effects of

CARP VIII knockdown [38]. Recent studies in mouse

brain by Sterky et al. [39] have shown that CARP X

and CARP XI dimerize with neurexin-1 through a

membrane-proximal disulfide bond and that the com-

plex formation enhances the surface expression of

neurexin-1 [39]. In this study, we wanted to see

whether CARPs would have effects on proton-coupled

lactate transport similar to the noncatalytic enhance-

ment by other CAs [20]. We have coexpressed MCT1

with the CA isoforms VIII, X, and XI in Xenopus

oocytes and determined MCT1 and CA activity by

measuring the rate of change in intracellular H+ con-

centration (DH+/Dt) with ion-sensitive microelectrodes.

Our results show that all three CARPs functionally

interact with the MCT1 and enhance the transport

activity of MCT1.

Materials and methods

Generation of hCA8 gene from human neuronal

cells

Total RNA was isolated from 8 + 2-week-old human neu-

ronal cells using Qiagen kit for RNA isolation for cultured

cells (Qiagen, Hilden, Germany). Total RNA was isolated
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from 30 mg sample using the RNeasy� Mini kit (Qiagen)

by following the manufacturer’s instructions. The concen-

tration and purity of total RNA were determined using a

Nanodrop Spectrophotometer at 260 and 280 nm. Reverse

transcriptase PCR was performed using 0.1–5 lg of total

RNA to synthesize the first-strand cDNA using First

Strand cDNA Synthesis kit (High-Capacity cDNA Reverse

Transcription Kits; Applied Biosystems, Foster City, CA,

USA) with random primers and M-MuLV reverse tran-

scriptase according to the protocol recommended by the

manufacturer.

Cloning of human CARP genes in pGEM-He-Juel

vector

The human CA10 and CA11 obtained from IMAGE

(MGC Geneservice Ltd, Cambridge, UK) and human CA8

gene were generated by RT/PCR from pluripotent human

neuronal cells as described above and were inserted into

pGEM-He-Juel using the primers given in Table 1. PCR

amplification of all three human CARP genes was carried

out using the forward and reverse primers containing the

restriction sites for appropriate restriction enzymes

(Table 1) using the PCR conditions: denaturation at 98 °C
for 2 min, 35 cycles of denaturation at 98 °C for 10 s,

annealing at 55 °C for 30 s, extension at 72 °C for 1 min,

and extension at 72 °C for 10 min.

The amplified product of the CARP genes and the plas-

mid vector pGEM-He-Juel were digested with the suitable

restriction enzymes. The digested products were purified

by MinElute kit (Qiagen) and then ligated by the T4 liga-

tion system (Promega, Madison, WI, USA) and cloned in

One Shot� TOP10 competent cells by taking 1 lL of the

plasmid plus 25 lL of competent cells and incubated on

ice for 30 min. The cells were heat-shocked at 42 °C for

30 s and transferred to the ice for 2 min. 125 lL of SOC

medium was added to each tube and kept at 37 °C in a

shaker at 225 r.p.m. for 1 h. 20 lL of the cells was spread

on Luria/Bertani (LB) agar plates and incubated at 37 °C
for 16 h. The bacterial colonies were screened by colony

PCR for the presence of the correct insert. The DNA

sequencing of four different clones for each CARP gene

was carried out. The sequences thus obtained were aligned

with ClustalW [40] and compared with cDNAs from the

databases.

Heterologous protein expression in Xenopus

oocytes

The procedure of heterologous protein expression in Xeno-

pus oocytes has been described in detail previously [41,42].

In brief, cDNA coding for human the CA isoforms VIII,

X, and XI, and rat MCT1, respectively, cloned into

pGEM-He-Juel, was transcribed in vitro using T7 RNA-

Polymerase (mMessage mMachine, Ambion Inc., Austin,

TX, USA). Frogs were purchased from the Radboud

University, Nijmegen, the Netherlands. Segments of ovar-

ian lobules were surgically removed under sterile conditions

from Xenopus laevis females which were anesthetized with

ethyl 3-aminobenzoate methanesulfonate (Tricaine, MS-

222; Sigma-Aldrich, Schnelldorf, Germany), and rendered

hypothermic. The procedure was approved by the Lan-

desuntersuchungsamt Rheinland-Pfalz, Koblenz (23 177-07/

A07-2-003 §6). Oocytes were singularized by treatment with

collagenase (Collagenase A; Roche, Mannheim, Germany)

in Ca2+-free oocyte saline (pH 7.8) for up to 2 h at 28 °C.
Singularized oocytes were incubated at 18 °C overnight in

Ca2+-containing oocyte saline (pH 7.8) to recover. Oocytes

of the developmental stages V and VI were injected with

3 ng of cRNA coding for MCT1, either together with

15 ng of cRNA coding for CA VIII, CA X, and CA XI,

respectively, or alone. Measurements were carried out 3–
6 days after injection of cRNA.

The oocyte saline had the following composition (in

mM): NaCl, 82.5; KCl, 2.5; CaCl2, 1; MgCl2, 1; Na2HPO4,

1; 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

(HEPES), 5; titrated with NaOH to the desired pH. In lac-

tate- and CO2/HCO�
3 -containing saline, NaCl was substi-

tuted by equimolar amounts of Na-L-lactate or NaHCO3.

Measurement of intracellular H+ concentration in

Xenopus oocytes

Changes in [H+]i were determined with ion-sensitive micro-

electrodes under voltage-clamp conditions, using double-

barreled microelectrodes. Manufacture and application of

the electrodes have been described previously [41,42]. In

brief, two borosilicate glass capillaries with a diameter of

1.0 and 1.5 mm were twisted together and pulled to a

micropipette. The tip of the ion-sensitive barrel was filled

with 5% tri-N-butylchlorsilane in 99.9% pure carbon

Table 1. Primers used in the experiments for cloning and qPCR analysis

Gene name Name of the primer Primers for cloning Primers for qPCR

hCA8 hCA8BamHI_F cgcggatccatggcggacctgagcttcat tgctttaatcccaacaccttattacc

hCA8EcoRI_R ccggaattcctactgaaatgcagctctaatgac tggcattgtaagagatccctcat

hCA10 hCA10 BamHI_F cgcggatccatggaaatagtctgggaggtgct gttggtggacatataaggaggttgt

hCA10EcoRI _R ccggaattcctacttgaggagccattcatt ttaccaagccccaaaaggaa

hCA11 hCA11BamHI _F cgcggatccatgggggctgcagctcgtctg tccgctcaggctgagtatga

hCA11EcoRI _R ccggaattctcagcgaccatgggggacacc gaaacatggcgccctgtatt
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tetrachloride and baked for 4.5 min at 450 °C on a hot

plate. A drop of H+-sensitive cocktail (95291, Sigma-

Aldrich, Schnelldorf, Germany) was backfilled into the sila-

nized tip, and the barrel was filled up with 0.1 M Na-

citrate, pH 6.0. The reference barrel was filled with 3 M

KCl. Calibration of the electrodes was carried out in

oocyte salines with a pH of 7.0 and 6.4. To detect optimal

H+ changes, the electrode was located near the inner sur-

face of the plasma membrane, as described previously [43].

Oocytes were constantly clamped to a holding potential of

�40 mV during the whole course of the experiment with an

additional microelectrode, filled with 3 M KCl which was

connected to an Axoclamp 2B amplifier (Axon Instruments,

Foster City, CA, USA). All experiments were carried out

at room temperature (22–25 °C). The measurements were

recorded with a custom-made software tool, based on the

program LabView (National Instruments Germany GmbH,

M€unchen, Germany). For determination of D[H+]i/Dt, the

initial slope of the H+ signal was determined by linear

regression using ORIGINPRO 8.6 (OriginLab Corporation,

Northampton, MA, USA) as previously described [41].

Real-time quantitative PCR of human CARP and

MCT1 genes from Xenopus oocytes

Real-time quantitative PCR (qPCR) primers were designed

based on the transcript sequences taken from Ensembl

(www.ensembl.org; ENST00000317995, ENST00000084798,

ENST00000285273, and ENST00000369626 for CA8,

CA10, CA11, and SLC16A1, respectively), using the pro-

gram Primer Express� Software v2.0 (Applied Biosystems).

Real-time qPCR was performed using the SYBR Green

PCR Master Mix Kit in an ABI PRISM 7000 Detection

SystemTM according to the manufacturer’s instructions

(Applied Biosystems). The PCR conditions consisted of an

initial denaturation step at 95 °C for 10 min followed by

40 cycles at 95 °C for 15 s (denaturation) and 60 °C for

1 min (elongation). The data were analyzed using the ABI

PRISM 7000 SDSTM software (Applied Biosystems). Every

PCR was performed in a total reaction volume of 15 lL
containing 2 lL of first-strand cDNA (20 ng cDNA),

1 9 Power SYBR green PCR Master MixTM (Applied

Biosystems), and 0.5 lM of each primer. The final results

expressed as the N-fold relative difference (ratio) in gene

expression between the studied samples. The relative

expression values were calculated according to the equa-

tion of Pfaffl with appropriate modification [44].

Results

CARPs enhance transport activity of MCT1 in

Xenopus oocytes

To investigate whether CARPs can enhance the trans-

port activity of MCT1, the rate of rise in intracellular

H+ concentration (D[H+]i/Dt) was determined in

oocytes, expressing MCT1 alone or coexpressing

MCT1 and CARP VIII, X, or XI, respectively, during

application of 3 or 10 mM lactate (Fig. 1A). Since lac-

tate is transported by MCT1 with H+ in a 1 : 1 stoi-

chiometry, D[H+]i/Dt can be used as a direct measure

for MCT transport activity. Coexpression of any of

the three CARPs resulted in a significant increase in D
[H+]i/Dt by 54–86%, indicating that the CARPs VIII,

X, and XI indeed enhance MCT1 transport activity

(Fig. 1B). In H2O-injected control oocytes, lactate

application induced no change in [H+]i, confirming that

the lactate-induced changes in intracellular H+ concen-

tration in MCT1-expressing oocytes are mediated by

MCT1 transport activity.

Potential catalytic activity of CARPs was checked by

measuring D[H+]i/Dt during application of 5% CO2/

10 mM HCO�
3 in oocytes, expressing MCT1 alone or

coexpressing MCT1 and CARP VIII, X, or XI, respec-

tively (Fig. 1C). Application of CO2/HCO�
3 evoked an

increase in [H+]i, the rate of which did not significantly

differ between the four types of oocytes (Fig. 1D). The

values are also similar to those recorded in H2O-injected

oocytes (Fig. 1E) [45]. These results confirm that none

of the three CARPs exhibits CA catalytic activity.

Levels of the human genes added by cRNA injec-

tions were measured by RT–qPCR. Figure 2 shows

that the expected genes were observed at similar levels.

Panels A to C show the levels of CA8, CA10, and

CA11 sequences, respectively, and Panel D shows that

of MCT1. The level of each gene was at RT–qPCR
background levels when the corresponding cRNA was

not injected.

Discussion

We have observed a clear enhancement of transport

activity of MCT1 by coexpression of MCT1 with any

of the human CARPs (VIII, X, and XI). These proteins

are devoid of CA enzymatic activity due to missing his-

tidines in the active site, so the assistance provided by

CARPs is definitely noncatalytic. Previous studies have

shown that facilitation of MCT1 by intracellular CA II

is independent of the CA catalytic activity, but requires

the enzymes’ intramolecular proton shuttle with the

histidine at position 64 and the two acidic residues

Glu69 and Asp72, which could function as surface pro-

ton collectors for the enzyme [17,22]. From this, it was

concluded that CA II could function as a ‘proton

antenna’ for the transporter, which can rapidly move

H+ between the transporter pore and surrounding pro-

tonatable residues. The need for such an antenna

derives from the finding that H+ cotransporters such as
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MCTs, substrate of which is available only at very low

concentrations, extract H+ from the surrounding area

at rates well above the capacity for simple diffusion to

replenish their immediate vicinity. Therefore, the trans-

porter must exchange H+ with protonatable sites at the

plasma membrane, which could function as a ‘proton-

harvesting antenna’ for the transporter [29]. Intracellu-

lar CA II, when directly bound to MCT1 or MCT4,

can move protons between the transporter pore and

surrounding protonatable residues at the cytosolic face

of the plasma membrane, which dissipates local proton

microdomains and facilitates H+/lactate cotransport

[15,17]. We assume that CARP VIII, X, and XI could

also function as ‘proton antenna’ for MCT1 to facili-

tate proton-coupled transport, in a similar way as is

suggested for other CAs. Even if the shuttling-mediat-

ing residues Glu69 and Asp72 of CA II [22] are not

conserved in any of the CARPs, there are other acidic

residues on their surfaces near the ‘active-site cavity’

which could work in the same function. A more

detailed study is ongoing in our laboratories. Interest-

ingly, the intramolecular proton shuttle, His 64, is con-

served among all three CARPs [46]. Therefore, it

appears plausible that the MCT1 C-terminal tail might

bind in the cavity in the same way as noted for CA II

[22].
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Fig. 1. Catalytically inactive CARP VIII, X, and XI facilitate MCT1 transport activity. (A) Original recordings of intracellular H+ concentration in

oocytes expressing MCT1 (black trace), or coexpressing MCT1 + CA8 (green trace), MCT1 + CA10 (red trace), and MCT1 + CA11 (blue

trace), respectively, during application of 3 and 10 mM lactate. (B) Rate of changes in intracellular H+ concentration (D[H+]i/Dt) as induced by

application of 3 and 10 mM lactate, respectively, in oocytes expressing MCT1 (black), or coexpressing MCT1 + CA8 (green), MCT1 + CA10

(red), and MCT1 + CA11 (blue). Left-hand bars in each pair correspond to 3 mM lactate and right-hand bars to 10 mM lactate, as indicated in

the green bars. (C) Original recordings of intracellular H+ concentration in oocytes expressing MCT1 (black trace), or coexpressing

MCT1 + CA8 (green trace), MCT1 + CA10 (red trace), and MCT1 + CA11 (blue trace), respectively, during application of 5% CO2/10 mM

HCO�
3 . (D) Rate of changes in intracellular H+ concentration (D[H+]i/Dt) as induced by application of 5% CO2/10 mM HCO�

3 , respectively, in
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the bars refer to number of experiments n. All values are depicted as mean + SEM. *Significance level of P ≤ 0.05, **significance level of

P ≤ 0.01; n.s., no significance (Student’s t-test, as compared to oocytes with MCT1 expressed alone). (E) Original recording of intracellular

H+ concentration in a H2O-injected control oocyte during application of 3 and 10 mM lactate and 5% CO2/10 mM HCO�
3 .
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Carbonic anhydrase-related proteins VIII is an

intracellular protein, whereas CARPs X and XI are

secretory [38]. Since all three isoforms enhance MCT1

transport activity, it can be assumed that CARPs can

interact with MCT1 both on the intracellular and on

the extracellular site. Indeed, the previous experiments

have shown that also the extracellular enzymes CA IV

and CA IX can facilitate the MCT transport activity

[18,20,21]. Intracellular CA II has been shown to bind

to an acidic cluster in the C-terminal tail of MCT1

and MCT4, respectively [19,23], while extracellular CA

IV and CA IX might interact with the transporter via

its chaperon CD147 [20,21]. From this, it can be

assumed that CARP VIII interacts with MCT1 by

binding to the transporter’s C-terminal tail, while

CARP X and CARP XI would interact with the trans-

porters chaperon CD147 on the extracellular site.

Emerging data indicate that the CARP proteins

interact with several proteins. We are currently study-

ing complex-forming partners of CARP X in human

pluripotent stem cell -derived neurons by mass spec-

trometry proteomics, and the preliminary results impli-

cate many novel binding partners (which will be

reported later), some of which may be disulfide-

bonded. We propose that the secretory CARPs (X and

XI) have a general tendency to block unpaired cys-

teines and thus form many types of disulfide com-

plexes with other proteins that are being synthesized,

even for other proteins than the documented case of

neurexin-1 [39]. The disulfide bonding is mediated by

the C-terminal extension in CARPs X and XI, after

the CA domain [38,39]. Therefore, the CA domain

should be mainly unchanged after binding and com-

pletely accessible for interactions even when CARP X

and CARP XI are parts in covalent complexes.
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Fig. 2. Presence of CARP genes in

injected Xenopus oocytes measured by

RT–qPCR. Labels under the columns

indicate the injected genes, native

meaning not injected with any human

gene. Measured transcripts of A, CA8; B,

CA10; C, CA11; and D, SLC16A1 (MCT1).

The bar graphs are the average values of

three replicates (n = 10 in each group),

and the error bars indicate standard

deviation (SD).
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