2,366 research outputs found

    Antenna design and development for the microwave subsystem experiments for the terminal configured vehicle project

    Get PDF
    The feasibility of classifying an airport terminal area for multipath effects, i.e., fadeout potentials or limits of video resolution, is examined. Established transmission links in terminal areas were modeled for landing approaches and overflight patterns. A computer program to obtain signal strength based on a described flight path was written. The application of this model to evaluate the signal transmission obtained in an actual flight equipped with additional signal strength monitoring equipment is described. The actual and computed received signal are compared, and the feasibility of the computer simulation for predicting signal amplitude fluctuation is evaluated

    On the Structure of Infrared Singularities of Gauge-Theory Amplitudes

    Full text link
    A closed formula is obtained for the infrared singularities of dimensionally regularized, massless gauge-theory scattering amplitudes with an arbitrary number of legs and loops. It follows from an all-order conjecture for the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory. We show that the form of this anomalous dimension is severely constrained by soft-collinear factorization, non-abelian exponentiation, and the behavior of amplitudes in collinear limits. Using a diagrammatic analysis, we demonstrate that these constraints imply that to three-loop order the anomalous dimension involves only two-parton correlations, with the possible exception of a single color structure multiplying a function of conformal cross ratios depending on the momenta of four external partons, which would have to vanish in all two-particle collinear limits. We argue that such a function does not appear at three-loop order, and that the same is true in higher orders. Our formula predicts Casimir scaling of the cusp anomalous dimension to all orders in perturbation theory, and we explicitly check that the constraints exclude the appearance of higher Casimir invariants at four loops. Using known results for the quark and gluon form factors, we derive the three-loop coefficients of the 1/epsilon^n pole terms (with n=1,...,6) for an arbitrary n-parton scattering amplitude in massless QCD. This generalizes Catani's two-loop formula proposed in 1998.Comment: 46 pages, 9 figures; v2: improved treatment of collinear limits, references added; v3: improved discussion of non-abelian exponentiation, references updated; v4: typo in eq. (17) fixed, references updated; v5: additional term in (17

    Direct photon production with effective field theory

    Get PDF
    The production of hard photons in hadronic collisions is studied using Soft-Collinear Effective Theory (SCET). This is the first application of SCET to a physical, observable cross section involving energetic partons in more than two directions. A factorization formula is derived which involves a non-trivial interplay of the angular dependence in the hard and soft functions, both quark and gluon jet functions, and multiple partonic channels. The relevant hard, jet and soft functions are computed to one loop and their anomalous dimensions are determined to three loops. The final resummed inclusive direct photon distribution is valid to next-to-next-to-leading logarithmic order (NNLL), one order beyond previous work. The result is improved by including non-logarithmic terms and photon isolation cuts through matching, and compared to Tevatron data and to fixed order results at the Tevatron and the LHC. The resummed cross section has a significantly smaller theoretical uncertainty than the next-to-leading fixed-order result, particularly at high transverse momentum.Comment: 42 pages, 9 figures; v2: references added, minor changes; v3: typos; v4: typos, corrections in (16), (47), (72

    Chromosomal Gains and Losses in Uveal Melanomas Detected by Comparative Genomic Hybridization

    Get PDF
    Eleven uveal melanomas were analyzed using comparative genomic hybridization (CGH). The most abundant genetic changes were loss of chromosome 3, overrepresentation of 6p, loss of 6q, and multiplication of 8q. The smallest overrepresented regions on 6p and 8q were 6pterp21 and 8q24qter, respectively. Several additional gains and losses of chromosome segments were repeatedly observed, the most frequent one being loss of 9p (three cases). Monosomy 3 appeared to be a marker for ciliary body involvement. CGH data were compared with the results of chromosome banding. Some alterations, e.g., gains of 6p and losses of 6q, were observed with higher frequencies after CGH, while others, e.g., 9p deletions, were detected only by CGH. The data suggest some similarities of cytogenetic alterations between cutaneous and uveal melanoma. In particular, the 9p deletions are of interest due to recent reports about the location of a putative tumor-suppressor gene for cutaneous malignant melanoma in this region

    Factorization and resummation of s-channel single top quark production

    Full text link
    In this paper we study the factorization and resummation of s-channel single top quark production in the Standard Model at both the Tevatron and the LHC. We show that the production cross section in the threshold limit can be factorized into a convolution of hard function, soft function and jet function via soft-collinear-effective-theory (SCET), and resummation can be performed using renormalization group equation in the momentum space resummation formalism. We find that in general, the resummation effects enhance the Next-to-Leading-Order (NLO) cross sections by about 33%-5% at both the Tevatron and the LHC, and significantly reduce the factorization scale dependence of the total cross section at the Tevatron, while at the LHC we find that the factorization scale dependence has not been improved, compared with the NLO results.Comment: 29 pages, 7 figures; version published in JHE

    Generalized Gauge Theories and Weinberg-Salam Model with Dirac-K\"ahler Fermions

    Full text link
    We extend previously proposed generalized gauge theory formulation of Chern-Simons type and topological Yang-Mills type actions into Yang-Mills type actions. We formulate gauge fields and Dirac-K\"ahler matter fermions by all degrees of differential forms. The simplest version of the model which includes only zero and one form gauge fields accommodated with the graded Lie algebra of SU(2∣1)SU(2|1) supergroup leads Weinberg-Salam model. Thus the Weinberg-Salam model formulated by noncommutative geometry is a particular example of the present formulation.Comment: 33 pages, LaTe

    Mass Mixing, the Fourth Generation, and the Kinematic Higgs Mechanism

    Full text link
    We describe how to construct chiral fermion mass terms using Dirac-Kahler (DK) spinors. Classical massive DK spinors are shown to be equivalent to four generations of Dirac spinors with equal mass coupled to a background U(2,2) gauge field. Quantization breaks U(2,2) to U(2)xU(2), lifts mass spectrum degeneracy, and generates a non-trivial mass mixing matrix.Comment: 12 pages. No figures. Phys Lett B version. Minor typos fixe

    NNLO soft function for electroweak boson production at large transverse momentum

    Full text link
    The soft function relevant for the production of an electroweak boson (photon, W, Z or H) with large transverse momentum at a hadron collider is computed at next-to-next-to-leading order. This is the first two-loop computation of a soft function involving three light-cone directions. With the result, the threshold resummation for these processes can now be performed at next-to-next-to-next-to-leading logarithmic accuracy.Comment: 16 pages, 3 figure

    The Spectrum of the 4-Generation Dirac-Kaehler Extension of the SM

    Full text link
    We compute the mass spectrum of the fermionic sector of the Dirac-Kaehler extension of the SM (DK-SM) by showing that there exists a Bogoliubov transformation that transforms the DK-SM into a flavor U(4) extension of the SM (SM-4) with a particular choice of masses and mixing textures. Mass relations of the model allow determination of masses of the 4th generation. Tree level prediction for the mass of the 4th charged lepton is 370 GeV. The model selects the normal hierarchy for neutrino masses and reproduces naturally the near tri-bimaximal and quark mixing textures. The electron neutrino and the 4th neutrino masses are related via a see-saw-like mechanism.Comment: 14 pages. Phys Lett B versio

    On the renormalization of multiparton webs

    Get PDF
    We consider the recently developed diagrammatic approach to soft-gluon exponentiation in multiparton scattering amplitudes, where the exponent is written as a sum of webs - closed sets of diagrams whose colour and kinematic parts are entangled via mixing matrices. A complementary approach to exponentiation is based on the multiplicative renormalizability of intersecting Wilson lines, and their subsequent finite anomalous dimension. Relating this framework to that of webs, we derive renormalization constraints expressing all multiple poles of any given web in terms of lower-order webs. We examine these constraints explicitly up to four loops, and find that they are realised through the action of the web mixing matrices in conjunction with the fact that multiple pole terms in each diagram reduce to sums of products of lower-loop integrals. Relevant singularities of multi-eikonal amplitudes up to three loops are calculated in dimensional regularization using an exponential infrared regulator. Finally, we formulate a new conjecture for web mixing matrices, involving a weighted sum over column entries. Our results form an important step in understanding non-Abelian exponentiation in multiparton amplitudes, and pave the way for higher-loop computations of the soft anomalous dimension.Comment: 60 pages, 15 figure
    • 

    corecore