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Abstract

The production of hard photons in hadronic collisions is studied using Soft-Collinear
Effective Theory (SCET). This is the first application of SCET to a physical, observable
cross section involving energetic partons in more than two directions. A factorization
formula is derived which involves a non-trivial interplay of the angular dependence in
the hard and soft functions, both quark and gluon jet functions, and multiple partonic
channels. The relevant hard, jet and soft functions are computed to one loop and their
anomalous dimensions are determined to three loops. The final resummed inclusive
direct photon distribution is valid to next-to-next-to-leading logarithmic order (NNLL),
one order beyond previous work. The result is improved by including non-logarithmic
terms and photon isolation cuts through matching, and compared to Tevatron data and
to fixed order results at the Tevatron and the LHC. The resummed cross section has a
significantly smaller theoretical uncertainty than the next-to-leading fixed-order result,
particularly at high transverse momentum.
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1 Introduction

The production of hard photons in high energy collisions is one of the most fundamental
processes to be observed at any hadronic collider. Photons which are produced from the
underlying partonic interaction are called direct, or prompt photons. They can probe the
structure of the proton at very small distance scales, and are therefore sensitive both to
details of the standard model and to possible new physics scenarios. At lowest order, there are
two partonic processes which can produce direct photons: the annihilation channel qq̄ → γg
and the Compton channel qg → qγ. The Compton channel is particularly important as it
gives direct access to the gluon parton-distribution function (PDF).

On the experimental side, the photon spectrum can be measured with great precision.
However, it is in general not possible to distinguish whether the photons are direct, that is
they have come from the underlying hard interaction, or if have been produced from secondary
fragmentation, such as π0 decay. This ambiguity is lessened somewhat for very high energy
photons, which are relatively unlikely to have been produced from fragmentation. Moreover,
demanding a mild isolation criterion on the photon, for example, that there be less than 2 GeV
of hadronic energy in some reasonable surrounding area, makes the high pT photon spectrum
a fairly clean probe of the underlying interaction.

On the theoretical side, the direct photon spectrum has been approached both in fixed
order perturbation theory and with soft gluon resummation. The cross section is known
for both the polarized and unpolarized case at next-to-leading order (NLO) [1, 2, 3], in the
fully inclusive case including analytic integration over the real emission contribution. The
Monte Carlo program jetphox [4] implements the NLO result numerically, as well as the
contamination from fragmentation, and allows the user to specify an isolation criterion.

Near the partonic threshold, where the transverse momentum pT of the photon is close
to half of the partonic center of mass energy pT .

√
ŝ/2, the invariant mass of the recoiling

hadronic system becomes small and the partonic cross section involves large logarithms. These
logarithmic terms, which arise from soft and collinear radiation, often amount to the bulk of
hadronic cross sections. To improve predictions, threshold contributions can be resummed to
all orders in perturbation theory. For direct photon production, this has been done to next-
to-leading logarithmic order (NLL) [5, 7, 8, 9] and a phenomenological comparison to data
from E-706 and UA-6 has been made [8, 10]. The resummation effects are important at large
pT , and therefore must be understood to improve the precision of theoretical predictions for
the direct photon pT spectrum and related observables.

The approach we take to resummation in direct photon production is based on the use
of effective field theory techniques. Effective field theories are powerful tools for separating
physics associated with different scales and resumming large logarithms of ratios of those scales
through the renormalization group. In this paper, we apply Soft-Collinear Effective Theory
(SCET) [11, 12, 13] to direct photon production. The effective theory was originally developed
to analyze B-decays, but its promise for collider physics was envisioned early on [14]. The
collider applications of SCET have included deep-inelastic scattering (DIS) [15, 16, 17, 18],
Drell-Yan [19, 20], Higgs production [21, 22, 23], tt̄ production and event shapes in e+e−

collisions [24, 25, 26, 27, 28, 29], and electroweak Sudakov resummation [30, 31, 32]. The
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main result of much of this work has been to improve our understanding of the effective
theory description of QCD, but in some cases it has led to qualitatively new phenomenology.
For example, in [28] the N3LL resummation of the thrust distribution was performed, leading
to one of the best measurements of αs and a strong model-independent bound on the gluino
mass [33]. However, there is still much work to be done in demonstrating the power of this
effective field theory at hadron colliders, and the present paper is a step in that direction.

All of the previous collider applications of SCET have involved processes with only two
directions of large energy flow: in DIS, these are the proton and outgoing jet, in Drell-Yan,
they are the incoming hadrons, and in e+e− they are the outgoing jets. Formal expressions
involving several directions of large energy flow are straightforward to write down [34, 35],
and the theory with multiple collinear fields has been used to perform electroweak Sudakov
resummation of partonic amplitudes [31, 32], and to derive constraints on the structure of
infrared singularities of gauge theory amplitudes [36, 37, 38]. However, so far it has not
been applied directly to a physical process, and it is an important step to derive and check a
factorization theorem for a cross section involving three directions. The simplest such process
at a hadron collider is direct photon production, which explains much of the motivation for
the current work.

We begin in Section 2 with an overview of direct photon production, including a review of
the relevant kinematics and a physical discussion of the factorization theorem. In Section 3,
the factorization theorem is derived with SCET. In order to achieve resummation at the next-
to-next-to-logarithmic order, which is one order beyond previous results, we need the one-loop
expressions for the hard, jet, and soft functions appearing in the factorization theorem. These
are calculated in Section 4. The relevant soft function, as defined through the factorization
theorem, depends on radiation away from the direction of the outgoing jet, and we calculate it
to one loop. The gluon jet function, necessary for the annihilation channel, is also calculated
at one loop. Using renormalization group (RG) invariance of the cross section, known results
for some of the anomalous dimensions, and Casimir scaling of the soft function, we manage to
extract the anomalous dimensions of the relevant hard, jet and soft functions to three loops.
After solving the relevant RG equations, we combine these ingredients together into a closed
analytical formula for the resummed direct photon distribution. In Section 5, we show that
the renormalization scale independence of the cross section implies a non-trivial cancellation
among angular dependent parts associated with different scales. Section 6 discusses the scale
choices and matching procedure. Finally, in Section 7, we evaluate our formula numerically,
comparing to Tevatron data and making predictions for the LHC.

2 Direct photon cross section

In this section, we establish some notation for kinematics of direct photon production. Then
we review the differential cross section in fixed-order QCD and discuss heuristically the fac-
torization formula which we derive with SCET in Section 3.
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2.1 Kinematics

Let the incoming hadron momenta be P µ
1 and P µ

2 and the photon momentum be pµγ . We are
interested in photon production at high pT ≡ pγT . Our results will be most accurate when pT
is near the machine threshold limit,

pT ∼ pmax
T =

ECM

2 cosh y
, (1)

where ECM =
√

(P1 + P2)2 is the center of mass energy of the collision and y is the photon’s
rapidity. pmax

T is the maximum pT the photon can possibly have for a given y. Of course,
the phenomenology of direct photon production is dominated by much smaller transverse
momenta, but the factorization theorem will only have exact perturbative scale independence
for pT ∼ pmax

T , and for its derivation we will expand around this threshold.
Near threshold, the recoiling radiation X must have PX

T ∼ pγT ∼ pmax
T , which is only

possible if the mass of the recoiling radiation is close to zero. By momentum conservation,

P µ
1 + P µ

2 = pµγ + P µ
X , (2)

and the threshold implies EX ∼ pmax
T ≫

√
P 2
X . Near this limit, the recoiling radiation can be

characterized as a jet of collinear particles with momentum pµJ accompanied by soft radiation
with momentum kµ, P µ

X = pµJ + kµ. As we will discuss in the next section, SCET provides a
field-theoretic description of the associated collinear and soft partons and their interactions.

At leading order, there are two channels for direct photon production: the Compton process
qg → qγ and the annihilation process qq̄ → gγ. In either case, let the incoming partons have
momenta pµ1 = x1P

µ
1 and pµ2 = x2P

µ
2 . The hadronic and partonic Mandelstam variables are

s = (P1 + P2)
2, t = (P1 − pγ)

2, u = (P2 − pγ)
2 , (3)

and
ŝ = (p1 + p2)

2 = x1x2s, t̂ = (p1 − pγ)
2 = x1t, û = (p2 − pγ)

2 = x2u . (4)

For direct photon production, it is conventional to work not in terms of the Mandelstam
variables, but in terms of dimensionless ratios of them.

v = 1 +
t̂

ŝ
, w = − û

ŝ+ t̂
. (5)

We will also use the shorthand
v̄ ≡ 1− v (6)

for compact notation. It follows that

ŝ =
1

w

p2T
vv̄
, t̂ = − 1

w

p2T
v
, û = −p

2
T

v̄
, (7)

x1 =
1

w

pT
ECMv

ey , x2 =
pT

ECMv̄
e−y . (8)
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At the hadron level, the event is characterized by two quantities, pT and y. At the parton
level, it takes four, for example, {pT , y, x1, x2}, or {pT , y, v, w}.

To understand the thresholds, it is helpful to define the hadronic invariant mass

M2
X = P 2

X = (P1 + P2 − p2γ) = s+ t+ u (9)

and the partonic invariant mass

m2
X = (p1 + p2 − pγ)

2 = ŝ+ t̂+ û . (10)

The partonic invariant mass, mX , includes only the partons involved in the hard scattering
process, while the hadronic mass,MX , includes also the proton remnants. Note that whileMX

is observable, mX must be integrated over in any measurable quantity. In the literature (e.g.
in [5]), the above two quantities are sometimes denoted by S4 = M2

X and s4 = m2
X . These

quantities represent the mass of everything in the final state except the photon, at the hadron
and parton levels respectively. At leading order in perturbation theory, where the partonic
final state consists of a single parton, w = 1 and mX = 0 exactly.

In terms of pT , y, v and w the threshold variables read

M2
X = E2

CM − 2pTECM cosh y = E2
CM (1− pT/p

max
T ) (11)

and

m2
X =

p2T
v̄

1− w

w
. (12)

In terms of mX , x1, x2 and v,

M2
X =

m2
X

x2
+ E2

CM [(1− x1)v + (1− x2)v̄] . (13)

Since partonic configurations are specified by four variables, surfaces of constant MX(pT , y)
are three dimensional. That is, there are three independent ways we can have the a small
deviation from MX = 0. It is natural to take the independent variations to be x1, x2 and m2

X

because setting x1 = x2 = 1 and mX = 0 forces MX = 0 exactly. The fourth variable, v, can
be thought of as moving us along the surface of constant MX . As MX → 0, vv̄ → p2T/E

2
CM.

Then, to first order in 1− x1, 1− x2 and m2
X ,

M2
X = m2

X +
p2T
vv̄

[(1− x1)v + (1− x2)v̄] + . . . . (14)

This is equivalent to the threshold expansion in [5]. This form for MX will be convenient for
checking the SCET factorization theorem in Section 5.

Note that the limit MX → 0 automatically enforces that the reaction takes place at the
threshold x1 → 1, x2 → 1, where the leading partons carry almost all of the proton momentum.
In contrast, taking mX → 0 does not force x1 → 1 or x2 → 1. At the partonic level, the
factorization theorem will resum logs of mX , which appear as αn

s ln
m(1 − w). It will also

resum logs from the evolution of the parton distribution functions, of the form αn
s ln

m(1−xi),
which are only relevant near the machine threshold. These two types of partonic logs must
then be combined to resum logs of αn

s ln
mMX/ECM in the full observable differential cross

section.
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2.2 Differential cross sections

Using v and w, the cross section can be written in the form [3]

d2σ

dydpT
=

2

pT

∑

ab

∫ 1−
pT

ECM
e−y

pT
ECM

ey
dv

∫ 1

pT
ECM

1

v
ey
dw

[
x1fa/N1

(x1, µ)
] [
x2fb/N2

(x2, µ)
] d2σ̂ab
dwdv

, (15)

where the sum is over the different partonic channels.
At leading order the mass of the final state is zero, w = 1, and

d2σ̂ab
dwdv

= σ̃ab(v)δ(1− w) (16)

where

σ̃qq̄(v) =
παeme

2
q

p2T
αs(µ)

2CF

Nc

(
v2 + v̄2

)
, (17)

σ̃qg(v) =
παeme

2
q

p2T
αs(µ)

1

Nc

(
1 + v̄2

)
v .

Here, eq are the charges of the quarks and Nc is the number of colors.
At next-to-leading order (NLO), the partonic cross section acquires w dependence. It has

the form (leaving the partonic indices ab implicit)

d2σ̂

dwdv
= σ̃(v)

{
δ(1− w) + αs(µ)

[
δ(1− w)h1(v) +

[
1

1− w

]

+

h2(v)

+

[
ln(1− w)

1− w

]

+

h3(v) + h4(v, w)

]}
. (18)

The plus distributions indicate the singular behavior at NLO as w → 1, that is, as the
kinematic threshold is approached. An NnLO computation would lead to higher-order plus

distributions, up to
[
ln2n−1(1−w)

1−w

]
+
. Keep in mind that there is implicit, non-singular, w de-

pendence in the PDF fa(x1, µ) as well. These functions hi can be found in [3]. The singular
ones, h1, h2 and h3, as well as the singular coefficients at NNLO are listed in Appendix B.

The result from effective theory, which we derive in Section 3, has the form1

d2σ̂

dwdv
= w σ̃(v)H(pT , v, µ)

∫
dk J(m2

X − (2EJ)k, µ)S(k, µ) . (19)

Here, H , J , and S are the hard, jet and soft functions, respectively and EJ is the energy
of the jet. The functions H , J , and S are different in the two partonic channels. The hard

1 The w prefactor in this equation is a convention, but it follows from the ŝ
−1 dependence of the partonic

cross section and conveniently cancels the w-dependence of x1 in Eq. (15).
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function comes from matching SCET to QCD. It depends only on v, since w = 1 at the hard
scale µh ∼ pT . The jet function comes from integrating out collinear modes. It depends on

w through m2
X =

p2T
1−v

1−w
w

. In particular, at leading order J(p2) = δ(p2), which reproduces
the δ(1− w) dependence of the LO cross section. Expanding the hard, jet and soft functions
to order αs will reproduce the other terms in the NLO cross section, up to terms which are
regular as w → 1 and correspond to power corrections in the effective theory. Expanding to
order α2

s produces all the singular terms at NNLO, which is a new result.
The scale µ in Eq. (19) should be identified with the factorization scale since it determines

where the PDFs are evaluated. Since the physical scales entering H , J , and S are quite
different, any choice of µ will lead to large perturbative logarithms. To resum these, we will
solve the RG equations for the three functions in Section 4 and evolve each of them from a
matching scale to the reference scale µ at which the different contributions are combined. For
the matching scale for the the hard function, we choose µh = pT . The choice of the matching
scales for the jet function and soft functions is less obvious, and will be discussed in Section 6.

The form of the SCET factorization theorem, Eq. (19), can be understood from simple
physical arguments. The recoiling radiation X in a high-pT direct photon event is almost
massless. That is, P 2

X ≪ EX . Thus, this radiation consists of particles forming a jet, with
momentum pµJ and additional soft radiation kµ. Then,

m2
X = p2X = (pJ + k)2 = m2 + 2k ·pJ (20)

up to terms of order k2 ≪ m2, where m2 = p2J is the mass of the jet. The precise allocation of
the final state particles into the jet or the soft sector is not well defined, but the ambiguities
give only power suppressed corrections to this relation.

Since the jet is lightlike at leading order, its momentum can be written as pµJ ∼ EJn
µ
J ,

where nµ
J = (1, ~nJ) is a lightlike vector. This is true up to power corrections, because n̄J ·pJ ≫

pJ⊥ ≫ nJ · pJ . Thus, the amplitude for producing a configuration with a particular value of
m2

X will be proportional to

J(m2) = J
(
m2

X − (2EJ)(nJ ·k)
)
. (21)

This explains the EJ dependence in Eq. (19). Also, we see that the only component of the
soft radiation which is relevant to threshold resummation is the nJ · k component, that is,
the piece backwards to the direction of the jet. This projection k ≡ (nJ · k) also appears
in the soft function of Eq. (19). Our derivation of the factorization theorem in the next
section will provide us with operator expressions for the jet and soft functions appearing in
the factorization theorem. We will compute these functions to one loop in Section 4.

3 Derivation of the factorization theorem

We will split up the derivation into two parts. First, we will summarize some results from
SCET about operators and scaling relations. Then we will apply the effective theory to the
process of direct photon production and derive the factorization theorem for the differential
cross section.
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3.1 Soft-Collinear Effective Theory

SCET provides an expansion in the limit of large energies and small invariant masses. For
a jet with momentum pµJ , we expand in ε = mJ/EJ . For direct photon production, there
are three high-energy scales, the energy of the two incoming partons and the energy of the
hadronic final state X . Correspondingly, we introduce three different sets of collinear fields
associated with the directions of large energy flow and one set of soft fields, which mediate
interactions among the different collinear directions.

The components of momenta pµci of collinear fields associated with the i-th direction,
whether quark (ψi), antiquark (ψ̄i) or gluon (Aµ

i ), scale as

i-collinear: (n̄i ·pci, ni ·pci, pµci⊥) ∼ (1, ε2, ε) , (22)

where the vectors nµ
i are light-like reference vectors along the i-th direction. For each light-

cone vector nµ
i , we also introduce a conjugate light-cone vector, n̄µ

i , such that n̄i ·ni = 2. The
field components of a collinear gluon scale in exactly the same way as its momentum, due
to gauge invariance. Two components of collinear Dirac spinors are suppressed and can be
integrated out, after which the spinors fulfill the constraint /ni χi = 0. Then, collinear fermion
fields scale as ε. All components of soft momenta, with respect to any of the jet directions,
are small

soft : pµs ∼ ε2 . (23)

Thus, soft fields can interact with any of the collinear fields without changing their scaling.
Soft gluon and soft quark fields scale as Aµ

s ∼ ε2 and ψs ∼ ε3, respectively.
To construct operators in the effective theory, it is convenient to work with the jet fields

χi and Aµ
i⊥ [12, 39]. They describe the propagation of energetic partons in the i-th direction,

but do not correspond to any experimental definition of jet, such as cone or kT -jet. Explicitly,
the jet fields are related to free collinear quark and gluon fields by the addition of Wilson lines

χi(x) = W †
i (x)

/ni /̄ni

4
ψi(x) , Aµ

⊥(x) = W †
i (x) [iD

µ
⊥Wi(x)] . (24)

These i-collinear Wilson lines

Wi(x) = P exp

(
ig

∫ 0

−∞

ds n̄i ·Ai(x+ sn̄i)

)
(25)

ensure that fields are invariant under collinear gauge transformations in each sector [11, 12].
The symbol P indicates path ordering, and the conjugate Wilson line W †

i is defined with the
opposite ordering prescription.

At leading power only the ni ·As component of the soft field can interact with the collinear
fields in the i-th direction, since all other components are power suppressed compared to
components of the collinear gluon field. As a consequence, the leading-power soft-collinear
interactions are Eikonal and the soft dynamics can be removed from the collinear Lagrangian
to all orders in perturbation theory through field redefinitions. For example, the interaction
of soft gluons with collinear fermions in the SCET Lagrangian has the form

Lci+s = χ̄i(x)
/̄ni

2
ni ·As(x−)χi(x) . (26)

7



where xµ− = (n̄i ·x)n
µ
i

2
. The peculiar x-dependence of the soft field will be explained below.

This interaction can be represented in terms of soft Wilson lines. Redefining the quark and
gluon fields as

χi(x) → Yi(x−)χi(x) , (27)

χ̄i(x) → Y †
i (x−)χ̄i(x) , (28)

Aµ
i⊥(x) → Yi(x−)Aµ

i⊥(x)Y
†
i (x−) , (29)

where

Yi(x) = P exp

(
ig

∫ 0

−∞

dt ni ·Aa
s(x+ tni) t

a

)
, (30)

eliminates the interaction Lci+s and other pure-gluon terms. After this decoupling transfor-
mation, soft interactions manifest themselves only through Wilson lines in the operators [12].

Let us now explain why the collinear fields in soft-collinear interactions, such as in Eq. (26),
are evaluated at x and the soft fields at x−. First, recall that a collinear sector alone should
be equivalent to full QCD (it can be derived as QCD in a boosted frame). Therefore, no
information must be lost in the derivative (or ”multipole”) expansion of a collinear field [13]

ψi(x) =

[
1 +

1

2
(n̄i ·x)∂ni

+
1

2
(ni ·x)∂n̄i

+ x⊥ ·∂⊥ + · · ·
]
ψi(0) = ψi(x) +O(ε) . (31)

Since (∂ni
, ∂n̄i

, ∂⊥) ∼ (ε2, 1, ε), for each of these terms to to scale like ε0 the scaling of x is
fixed:

(n̄i ·x, ni ·x, x⊥) ∼ (ε−2, 1, ε−1) . (32)

This is collinear scaling in position space. Now, for a soft field interacting with a collinear
field at the same point x, we can multipole expand as well

Aµ
s (x) =

[
1 +

1

2
(n̄i ·x)∂ni

+
1

2
(ni ·x)∂n̄i

+ x⊥ ·∂⊥ + · · ·
]
Aµ

s (0) = Aµ
s

(
(n̄i ·x)

nµ
i

2

)
+O(ε) .

(33)
For these fields, since the soft momenta scale like (∂ni

, ∂n̄i
, ∂⊥) ∼ (ε2, ε2, ε2), only the terms

like [(n̄i ·x)∂ni
]k are unsuppressed, which is why Aµ

s (x) = Aµ
s (x−) at leading power. This is

simply the position space version of Eq. (20), (pJ + k)2 = m2 + 2EJ(nJ ·k) + O(ε), and will
play a crucial role in the derivation of the factorization theorem below.

3.2 SCET for direct photon production

To study direct photon production in the effective theory we first introduce three light-like
reference vectors. Two vectors nµ

1 and nµ
2 are aligned with the beam and point in the direction

of the incoming hadrons with momenta P µ
1 and P µ

2 . The third reference vector nµ
J is along the

direction of the hadronic jet, which recoils against the hard photon.
With the field content and scaling dimensions of SCET established, the first step is to match

to the full standard model. For direct photon production, we need to introduce operators which
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can reproduce the matrix element of the the vector current Jν(x) = ψ̄(x) γν ψ(x) in the full
theory. The leading operators relevant for the partonic process qq̄ → γg are

OS ν
qq̄ (x

µ; t1, t2, tJ) = χ̄2(x
µ + t2n̄

µ
2 )AJ

ν
⊥(x

µ + tJ n̄
µ
J)χ1(x

µ + t1n̄
µ
1 ) , (34)

OT ν
qq̄ (xµ; t1, t2, tJ) = χ̄2(x

µ + t2n̄
µ
2 ) iσνρ AJ

ρ
⊥(x

µ + tJ n̄
µ
J)χ1(x

µ + t1n̄
µ
1 ) .

These two operators correspond to the two cases where the quarks have equal or opposite
spin. We are interested in the unpolarized cross-section, and so will need the sum of both
contributions. In addition to OS ν

qq̄ and OT ν
qq̄ there are 5×2 more operators, which are obtained

by permuting the indices on the fields in OS ν
qq̄ and OT ν

qq̄ , and which describe the other partonic
channels with initial states q̄q, qg, gq, q̄g, and gq̄. Their Wilson coefficients can all be derived
from the Wilson coefficients of the Oν

qq̄ operators by exchanging the momenta. For the case of
the Oν

qg operators, associated with the qg → γq channel, the corresponding crossing relations
are nontrivial, and care has to be taken to get the proper imaginary parts. There are also
operators with three collinear gluon fields. It is straightforward to include them, however, the
gg → gγ channel starts contributing only at NNLO and these operators are only relevant for
N3LL resummation. In the following, we will generically refer to all the operators relevant for
direct photon production as Oν

j .
Note that the operators Oν

j are not local. The non-locality arises because derivatives
along the directions associated with large momentum flow are not suppressed. The variables
t1, t2 and tJ on which the operators depend are the position space equivalent of the label
momenta introduced in [11]. The smearing in the nµ

i direction which they induce allows for
different amounts of energy in the corresponding collinear fields. The Wilson coefficients for
the operators must also also depend on these ti’s, and these variables must be integrated over
in matching to the full theory

Jν(xµ) =
∑

j

∫
dt1 dt2 dtJ Cj(t1, t2, tJ)Oν

j (x
µ, t1, t2, tJ). (35)

For the calculation of the cross section, we will need the Fourier transformedWilson coefficients

C̃(n̄1 ·P1, n̄2 ·P2, n̄J ·PX) =

∫
dt1 dt2 dtJ e

−i[t1(n̄1·P1)+t2(n̄2·P2)−tJ (n̄J·PX)]C(t1, t2, tJ) (36)

which depend on the large component of the momenta in each of the three directions. The
fact that the Wilson coefficients depend on the large light-cone components of the collinear
particles is characteristic for SCET. An alternative to the position space formalism [13] we are
using is the label formalism [11], where the large momentum component is treated as a label
on the collinear fields, similar to the heavy quark velocity in HQET.

The starting point for the factorization theorem is a generic expression for the cross section
in terms of matrix elements of the production current, summed over final hadronic states, and
differential in the photon momentum

dσ =
2παe e

2
q

E2
CM

d3pγ
(2π)32Eγ

∑

X

(2π)4δ(4)(P1 +P2 −PX − pγ)
∣∣〈X | ǫνJν(0) |N1(P1)N2(P2)〉

∣∣2 . (37)

9



The states |X〉 are the hadronic part of the final states allowed in the process and ǫν is the
photon polarization vector. For high-pT direct photon production, these states must include
a hard jet and so the scaling of P µ

X is like that of the jet momentum pµJ .
For the matching step, we integrate out the hard modes of the theory. This amounts to

plugging in the representation of the electromagnetic current operator in the effective theory
and restricting the final states to soft and collinear modes. After matching the current Jν(0)
using Eq. (35), the collinear fields in Eq. (37) are evaluated at positions χi(tin̄

µ
i ). These points

can be translated to ti = 0, using

χi(tin̄
µ
i ) = e+iti(n̄i·Pi) χi(0)e

−iti(n̄i·Pi) . (38)

Then we can have the momentum operators act on the states, where they evaluate to the large
momentum associated with the given direction. Performing the integral over the convolution
variables ti, as in Eq. (36), yields the Fourier transforms of the hard matching coefficient.
Thus, we have

dσ =
2παe e

2
q

E2
CM

d3pγ
(2π)32Eγ

∑

X

∫
d4x ei(P1+P2−PX−pγ)x

×
∣∣∣
∑

j

C̃j(n̄1 ·P1, n̄2 ·P2, n̄J ·PX)〈X |ǫνOν
j (0)|N1(P1)N2(P2)〉

∣∣∣
2

, (39)

where Oν
j (x) ≡ Oν

j (x
µ; 0, 0, 0). Note that this has been separated into a sum over states |X〉

with only soft and collinear fields, and a sum over the operators.
We would like to get rid of the sum over states and write the above expression (39) as a

forward matrix element. To this end, we turn the exp(iPix) factors to operators exp(iPix), by
using the states |Ni(Pi)〉 and |X〉. Then these operators act on the the three collinear fields in
Oν

j (0), moving the entire operator to Oν
j (x). After summing over photon polarizations, this

gives

dσ =
2παe e

2
q

E2
CM

d3pγ
(2π)32Eγ

∑

X

∑

j,k

C̃j(n̄1 ·P1, n̄2 ·P2, n̄J ·PX)C̃
∗
k(n̄1 ·P1, n̄2 ·P2, n̄J ·PX)

×
∫

d4x e−i(pγx) 〈N1(P1)N2(P2)| Oν†
j (x) |X〉〈X| Oν

k(0) |N1(P1)N2(P2)〉 . (40)

This has the form of a two point function, where the interaction between Oν†
j (x) and Oν

k(0) is
mediated by exchange of final state particles |X〉. Since P µ

X scales like a collinear field in the
nµ
J direction, x must scale like the conjugate position space coordinate (see Eq. (32)):

(n̄J ·x, nJ ·x, x⊥) ∼ (ε−2, 1, ε−1) . (41)

This scaling will help define the soft function below.
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Next, we perform the field redefinition to remove the soft interactions from the Lagrangian.
The operators then factorize into a soft and a collinear part. For example,

OS ν
qq̄ =

(
χ̄2Aνa

J⊥χ1

)(
Y †
2 YJt

aY †
J Y1

)
= Oc ν

qq̄ Os
qq̄ , (42)

where we suppress the color indices of the quark fields, which are contracted with those of
the soft Wilson lines. The collinear operators Oc ν

j have the same form as the operators in
Eq. (34), but are built from fields which no longer have soft interactions. The matrix elements
of the collinear operators give the PDFs and the jet functions. They are sensitive to the
gluon’s polarization and quark spins, but diagonal in color space. On the other hand, the soft
interactions are independent of spin, but inherit their color from the original process in full
QCD. Explicitly, the soft part of the operators for the qq̄ → γg process are given by

[
Os

qq̄(x)
]a
ij
=

[
Y †
2 (x) YJ(x) t

aY †
J (x)Y1(x)

]

ij
, (43)

where i and j are color indices. Each of these Y ’s is a matrix in color space, and the final soft
operator depends on the color of the quarks and the gluon. The fact that the collinear matrix
elements are color diagonal implies that in the matrix element squared the color indices of
Os†

j (x) get contracted with Os
k(0) so that the soft function will involve a color trace.

Because the soft and the collinear sectors no longer interact among each other, the matrix
elements of the operators factorize into a product of matrix elements. Also, since P µ

X scales
like pµJ , the states |X〉 have collinear radiation in the nµ

J direction and soft radiation, but not
collinear radiation in the direction of the nucleons. For the matrix element of OS ν

qq̄ this means

〈
N1(P1)N2(P2)

∣∣∣OS ν†
qq̄ (x)OS

qq̄

ν
(0)

∣∣∣N1(P1)N2(P2)
〉

=

〈N1(P2) |χ̄1α(x)χ1β(0)|N1(P1)〉 × 〈N2(P2) |χ̄2β(x)χ2α(0)|N2(P2)〉

×
∑

Xc

〈0|Aν
J⊥(x)|Xc〉〈Xc|Aν

J⊥(0)|0〉 ×
∑

Xs

〈0|Os†
qq̄(x)|Xs〉〈Xs|Os

qq̄(0)|0〉 . (44)

Note that the Dirac indices α and β are contracted among the different collinear fermions.
In this factorized form, it is now obvious that the collinear matrix elements are diagonal in
color space. As stated above, this implies that the color indices of the soft operator shown in
Eq. (43) are contracted between Os†

qq̄(x) and Os
qq̄(0).

The matrix elements of the collinear fields associated with the jets give rise to the quark
and gluon jet functions

〈0| χ̄i
J (x) Γχ

j
J(0) |0〉 = δij tr

[
/nJ

2
Γ

] ∫
d4p

(2π)3
θ(p0) (n̄J ·p) Jq(p2) e−i x p , (45)

〈0| Aa
J
µ
⊥(x)Ab

J

ν

⊥(0) |0〉 = δab (−gµν⊥ ) g2s

∫
d4p

(2π)3
θ(p0) Jg(p

2) e−i x p , (46)
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where i, j and a, b are the color indices of the fields. The quark jet function is the same
universal object appearing in the factorization theorems for DIS [17] and thrust [25, 26, 28].
The gluon jet function has appeared in the analysis of quarkonium production [40, 41, 42].

For the other matrix elements, we can simplify things by using the SCET scaling relations
to project out the leading power. For the soft operator, using the multipole expansion and the

scaling of x we find that it depends only on xµ− = (n̄J ·x)n
µ
J

2
to leading power, as in Eq. (33).

Then the soft function relevant, for example, for the partonic channel qq̄ → γg reads

1

Nc
〈0|Tr T̄

[
(Y1 YJt

a Y †
J Y2)(x−)

]
T

[
(Y †

2 YJt
aY †

J Y1)(0)
]
|0〉 =

∫ ∞

0

dk+ e
−ik+(n̄J ·x)/2 Sqq̄(k+) .

(47)
Since the soft function only depends on x−, its Fourier transform only depends on k+ = nJ ·k,
where kµ is the soft radiation in |X〉. The soft function can also be written as

Sqq̄(k+) =
1

Nc

∑

Xs

∣∣∣
〈
Xs

∣∣∣T̄
[
Y †
1 (0) YJ(0)t

a Y †
J (0)Y2(0)

] ∣∣∣ 0
〉∣∣∣

2

(2π)δ(nJ ·pXs − k+) , (48)

where the color indices of the Wilson lines need to be contracted as in Eq. (47) above. The
soft function is the amplitude squared for the emission of a set of soft partons from the three
Wilson lines. The time-ordered product appears because cross sections are extracted from
expectation values of time-ordered products of fields. A discussion of how expressions such
as Eq. (47) arise in the path integral formulation of SCET can be found in Appendix C of
Ref. [20].

For the matrix elements involving the incoming nucleons, the momenta and derivatives
scale like

(∂ni
, ∂n̄i

, ∂⊥) ∼ (ni ·Pi, n̄i ·Pi, P⊥) ∼ (ε′2, 1, ε′) , (49)

where ε′ = mN/Ei. We assume that the nucleon masses are negligible, mN ≪ mJ , so that ε
′ ≪

ε. Then, including only the leading power in the multipole expansion, χi(x) = χi

(
ni ·x n̄µ

i

2

)
. 2

The expanded collinear matrix elements are the usual PDFs

〈Ni(Pi)|χ̄i

(
ni ·x

n̄µ
i

2

)
Γχi(0) |Ni(Pi)〉 =

1

4
n̄i ·Pi tr [/niΓ]

∫ 1

−1

dξ fq/Ni
(ξ) ei ξ (ni·x)(n̄i·Pi)/2 ,

〈Ni(Pi) | (−gµν) Aµ
i⊥

(
ni ·x

n̄µ
i

2

)
Aν

i⊥(0) |Ni(Pi)〉 =
∫ 1

−1

dξ

ξ
fg/Ni

(ξ) ei ξ(ni·x) (n̄i·Pi)/2 , (50)

for quarks and gluons, respectively. The SCET matrix elements are identical to the PDFs
defined in QCD because the collinear Lagrangian is equivalent to the original QCD Lagrangian
after the decoupling. Negative values of ξ correspond to the anti-particle PDF, fq̄/Ni

(ξ) =

2A proper treatment of a theory with two expansion parameters ε and ε
′ would involve messenger modes,

i.e. soft modes involving the expansion parameter ε′. In this case, the messenger modes can be absorbed into
the parton distribution functions. A detailed analysis of an an analogous situation has been performed for
DIS in [17], and we choose not to repeat it here.
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f̄q/Ni
(ξ) = −fq/Ni

(−ξ) and fg/Ni
(ξ) = f̄g/Ni

(ξ) = −fg/Ni
(−ξ). Matrix elements which involve

different fields all vanish. For example,

〈0 |χ̄J (x) Aν
J⊥(0) |0〉 = 0 . (51)

Furthermore, because of the traces in the collinear matrix elements, Eqs. (45) and (50), the
mixed tensor-scalar matrix elements vanish as well. Thus, only the diagonal terms j = k
contribute in the sum, Eq. (40).

Now let us combine the different ingredients. For the OS ν
qq̄ operator, we get

dσ ∝
∫

d4x

∫
d4pJ
(2π)4

∫ 1

0

dξ1

∫ 1

0

dξ2

∫
dk+|C̃S

qq̄|2fq/N1
(ξ1)fq̄/N2

(ξ2)Jg(p
2
J)Sqq̄(k+)

× e−i(pγx)e−ik+(n̄J ·x)/2e−i (pJ ·x)ei ξ1(n1·x)(n̄1·P1)/2ei ξ2(n2·x) (n̄2·P2)/2 . (52)

The x integral gives (2π)4δ(4)(pµ1 − pµ2 − pµγ − pµJ − k+
n̄µ

2
), where the parton momenta are

pµ1 = ξ1(n̄1 · P1)
nµ
1

2
and pµ2 = ξ2(n̄2 · P2)

nµ
2

2
. Doing the pJ integral then gives

dσ ∝
∫ 1

0

dx1

∫ 1

0

dx2

∫
dk|C̃qq̄|2fq/N1

(x1)fq̄/N2
(x2)Jg(m

2
X − (2EJ)k)Sqq̄(k) , (53)

where m2
X = (pγ − p1 − p2)

2, 2EJ = n̄J · (p1 + p2 − pγ), and we have relabeled ξi as xi and k+
as k.

To get to the final form of the factorization theorem, we observe that at leading order
J(p2) = δ(p2) and S(k) = δ(k). Thus, the sum over Wilson coefficients

∑
j |C̃2

j |, including the
factors of 2 and such from the Γ traces and n·n̄ factors, must reproduce the full leading order
direct photon cross section. So, we define hard functions Hqq̄ and Hqg for the two channels
to be the the sum over the squares of the relevant Wilson coefficients normalized to their
values to leading order in perturbation theory. Including the appropriate Jacobian factors,
the contribution of the annihilation channel to the cross section reads

d2σqq̄
dydpT

=
2

pT

∫ 1−
pT

ECM
e−y

pT
ECM

ey
dv

∫ 1

pT
ECM

1

v
ey
dw

[
(wx1)fq/N1

(x1, µ)
] [
x2fq̄/N2

(x2, µ)
]

× σ̃qq̄(v)Hqq̄(pT , v, µ)

∫
dkJg(m

2
X − (2EJ)k, µ)Sqq̄(k, µ) , (54)

and for the Compton channel

d2σqg
dydpT

=
2

pT

∫ 1−
pT

ECM
e−y

pT
ECM

ey
dv

∫ 1

pT
ECM

1

v
ey
dw

[
(wx1)fq/N1

(x1, µ)
] [
x2fg/N2

(x2, µ)
]

× σ̃qg(v)Hqg(pT , v, µ)

∫
dkJq(m

2
X − (2EJ)k, µ)Sqg(k, µ) . (55)
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The definition of σ̃ and a simpler, more physical, discussion of this factorization formula were
given in Section 2.2.

To finish, let us briefly discuss the other photon-production mechanism, where the photon
is produced by fragmentation. In this case, the relevant SCET operators involve four collinear
fields, in the directions of the incoming hadrons and the outgoing jet as well as in the direction
of the outgoing photon. The matrix element of the collinear fields in the photon direction
corresponds to the fragmentation function. Since the invariant mass of the hadronic final
state is small near threshold, it cannot contain any hard collinear partons in the photon
direction. The outgoing collinear quark must thus fragment into the photon and a soft quark.
Soft quark fields are power suppressed, which explains the smallness of the fragmentation
contribution at large pT .

4 Calculation of the cross section in SCET

With the factorization formula in hand, we can proceed to calculate the hard, jet and soft
functions in perturbation theory. Then we will use the RG to run between the relevant
matching scales providing the final resummed distribution.

4.1 Hard function

The hard functions Hqq̄ and Hqg entering the factorization formulas, Eqs. (54) and (55), are
given by the absolute value squared of the Wilson coefficients of operators, such as OSν

j in
Eq. (34), which are built from three collinear fields along the three directions defined by the
beams and the outgoing hadronic jet. The Wilson coefficients of the operators are determined
by calculating the qq̄ → γg and qg → γq amplitudes in SCET and in QCD. The matching
calculation is greatly simplified by the fact that all of the on-shell SCET diagrams are scaleless
and vanish in dimensional regularization. In the MS subtraction scheme, this allows us to
directly read off the result for the Wilson coefficient from the fixed order calculation in the full
theory. To this end, we use the paper [43] which gives the result for the virtual corrections to
qq̄ → γg and qg → γq at one loop. In the effective theory, this result corresponds to the bare
Wilson coefficient squared. After normalizing to the tree-level and removing divergences by
renormalization, we then obtain the result for the one-loop hard function. For the annihilation
channel, the result is

Hqq̄(pT , v, µ) = 1 +
(αs

4π

){
− (2CF + CA) ln

2 p
2
T

µ2
+ (4CF ln(vv̄) + 6CF ) ln

p2T
µ2

+
−336 + 65π2

18
− 17

3
ln v ln v̄ +

1

6
ln2(vv̄)− 11

3
ln(vv̄)

+
(−3 + 2v) ln2 v̄ + (48v − 26) ln v̄ + (22− 48v) ln v + (−1 − 2v) ln2 v

6(v2 + v̄2)

}
. (56)
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The Casimirs in the second and third lines have been set to CA = 3 and CF = 4/3 for
simplicity. The result for the Compton channel is presented in Appendix A.

To perform resummation, we need the anomalous dimension of the corresponding SCET
operator. This anomalous dimension is linear in lnµ, which is characteristic for problems
involving Sudakov double logarithms. For NNLL accuracy, we need the logarithmic part of
the anomalous dimension to three loops and the remainder to two-loop order. The anomalous
dimension of a general leading-power SCET operator for an n-jet process involving mass-
less partons was given in [36, 37] and the result has been generalized to the massive case
in [38, 44, 45]. The anomalous dimensions of SCET operators are related to infrared singu-
larities of QCD amplitudes [36]. A two-loop formula for these divergences was proposed by
Catani [46]. However, he did not have a result for the 1/ε pieces at two loops. His formula was
later derived in [47] and the missing piece was related to a soft anomalous dimension which was
calculated to two loops in [48, 49]. Recently, it was realized that there are strong constraints
on the infrared divergences, in particular from soft-collinear factorization and collinear limits
of amplitudes [36, 50, 37, 51]. These constraints explain the two-loop result for the soft anoma-
lous dimension obtained earlier [48, 49] and in our case completely determine the anomalous
dimension to three loops.

We need the result for the three-jet operators of the form χ̄1Aν
2⊥χ3, as in in Eq. (34). In

the color-space formalism [52, 53] used in these papers, the RG equation has the form

d

d lnµ
|C̃({pq̄, pq, pg}, µ〉 = Γ({p}, µ)|C̃({pq̄, pq, pg}, µ〉 (57)

=

[
∑

i 6=j

Ti · Tj

2
γcusp(αs) ln

µ2

−sij
+
∑

i

γi(αs)

]
|C̃({pq̄, pq, pg}, µ〉 ,

where sij ≡ 2σij pi · pj + i0, and the sign factor σij = +1 if the momenta pµi and pµj are both
incoming or outgoing, and σij = −1 otherwise. The Wilson coefficients only depend on the
large components of the momentum, so pµi → 1

2
(n̄i · pi)nµ

i , where ni = n1, n2 or nJ is the
light-like reference vector in the direction of the appropriate parton. The color-generators are
(T a

q )αβ = taαβ , (T
a
q̄ )αβ = −taβα, (T a

g )bc = −ifabc. The anomalous dimension coefficients entering
the above equation were given to three loops in [37]. The single-parton terms involving γi

depend only on the representation of the ith parton and are given by two anomalous dimensions
γq and γg. Note that these anomalous dimensions are different from γfq and γfg , which are
relevant for the evolution of the PDFs near the end-point (see Eq. (96) below).

The above form Eq. (57) is exact at least up to three-loop order. Terms involving the
conformal ratios introduced in [50] can only appear for four or more partons and an additional
constant term is ruled out by considering constraints from collinear limits [37]. Furthermore,
for the operators we consider, there is only a single color structure: the three fields are
contracted with taij, where i, j and a are the colors of the anti-quark, quark, and gluon fields
respectively in the operator. The Wilson coefficient in color space can thus be written in the
form

|C̃({pq̄, pq, pg}, µ〉 = taijC̃({pq̄, pq, pg}, µ) . (58)
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Plugging in the explicit form of the generators, the RG-equation becomes

d

d lnµ
C̃({pq̄, pq, pg}, µ) =

{
γcusp(αs)

[
−CA

2

(
ln

µ2

−sq̄g
+ ln

µ2

−sqg

)

−
(
CF − CA

2

)
ln

µ2

−sqq̄

]
+ 2γq + γg

}
C̃({pq̄, pq, pg}, µ) . (59)

The Wilson coefficients C̃ depend on the directions nµ
i as well as on the momenta pµi .

However, the dependence only arises via the large momentum components, pµi → 1
2
(n̄i ·pi)nµ

i .
At leading power, products of these large components are equal to the usual Mandelstam
invariants. That the hard function only depends on these invariants is also clear since it
arises from a calculation entirely within the full theory, which has no access to the light-cone
reference vectors, so that we know that the final answer can only depend on Lorentz-invariant
products of the momenta. Moreover, there is only one dimensionless ratio at threshold, so we
know that H can only depend on v = 1 + t̂/ŝ. From the above result for the RG equation of
the Wilson coefficient, we then find that the hard function for the qq̄ satisfies

dHqq̄(pT , v, µ)

d lnµ
=

[
(2CF + CA)γcusp ln

p2T
µ2

− 2CFγcusp ln(vv̄) + 2γH − β(αs)

αs

]
Hqq̄(p

2
T , v, µ) ,

(60)
where γH = 2γq + γg. The extra β(αs) piece comes from the our normalization of the hard
function; it compensates for the scale dependence of the αs factor in the leading order cross-
section (see Eq. (17)). The solution is

Hqq̄(pT , v, µ) =
αs(µh)

αs(µ)
exp [(4CF + 2CA)S(µh, µ)− 2AH(µh, µ)]

×
(
p2T
µ2
h

)−(2CF+CA)AΓ(µh,µ)

(vv̄)2CFAΓ(µh,µ)Hqq̄(pT , v, µh) , (61)

where H(pT , v, µh) has the perturbative expansion in αs given in Appendix A. For the Comp-
ton channel,

Hqg(pT , v, µ) =
αs(µh)

αs(µ)
exp [(4CF + 2CA)S(µh, µ)− 2AH(µh, µ)]

×
(
p2T
µ2
h

)−(2CF+CA)AΓ(µh ,µ) (
v2CA v̄2CF

)AΓ(µh,µ)Hqg(pT , v, µh) . (62)

The functions S(ν, µ) and A(ν, µ) are the same as in previous papers [17, 28], with a factor
of CF factored out of the cusp anomalous dimension in S(ν, µ) and AΓ(ν, µ). That is

S(ν, µ) = −
∫ αs(µ)

αs(ν)

dα
γcusp(α)

β(α)

∫ α

αs(ν)

dα′

β(α′)
, AΓ(ν, µ) = −

∫ αs(µ)

αs(ν)

dα
γcusp(α)

β(α)
. (63)

AH(ν, µ) is the same as AΓ but with γH replacing γcusp. Explicit expressions for these functions
in RG-improved perturbation theory can be found in [17].
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Figure 1: Diagrams contributing to the soft function at NLO.

4.2 Soft functions

We consider the soft functions next. The Lagrangian of the soft sector of SCET is identical
to the standard QCD Lagrangian, so the calculation of the soft matrix element is the same as
in QCD. They are determined by matrix elements of time-ordered products of three Wilson
lines. Rewriting Eq. (47), for the two channels,

1

Nc
〈0|Tr T̄

[
(Y †

1 YJt
a Y †

J Y2)(x−)
]
T

[
(Y †

2 YJt
aY †

J Y1)(0)
]
|0〉 =

∫ ∞

0

dk+ e
−ik+(n̄J ·x)/2 Sqq̄(k+) ,

1

Nc

〈0|Tr T̄
[
(Y †

1 Y2t
a Y †

2 YJ)(x−)
]
T

[
(Y †

J Y2t
aY †

2 Y1)(0)
]
|0〉 =

∫ ∞

0

dk+ e
−ik+(n̄J ·x)/2 Sqg(k+) .

The soft functions for the qq̄ and qg channels differ only by which representation of SU(3)

is associated with which direction. In particular, the position xµ− = (n̄J ·x)n
µ
J

2
at which they

are evaluated points in the direction of the adjoint in the qq̄ → gγ case and a triplet (or
anti-triplet) in the qg → qγ case.

In dimensional regularization the virtual graphs contributing to this soft function vanish,
so we are left with real emission diagrams. These can be drawn as cuts through diagrams
with a gluon being exchanged between any Wilson line at 0 and any other Wilson line at x,

as shown in Figure 1. The soft (Eikonal) Feynman rules give a factor of
nµ
i

(q·ni)
for the emission

from leg i, so in particular graphs involving emission and absorption into the same leg vanish.
As indicated by the one-dimensional Fourier transforms in Eq. (64), the x− dependence means
we only need the dependence on the component of soft radiation backward to the direction of
the jet.

The non-vanishing diagrams for the qq̄ → gγ case give

Sqq̄(k) = 2 g2sµ
2ε

∫
ddq

(2π)d−1
δ(q2)θ(q0)δ(k − nJ · q)

×
[(
CF − 1

2
CA

)
n1 ·n2

(n1 ·q)(n2 ·q)
+

1

2
CA

nJ ·n1

(nJ ·q)(n1 ·q)
+

1

2
CA

nJ ·n2

(nJ ·q)(n2 ·q)

]
, (64)

and for the qg → qγ channel
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Sqg(k) = 2 g2sµ
2ε

∫
ddq

(2π)d−1
δ(q2)θ(q0)δ(k − nJ ·q)

×
[
1

2
CA

n1 ·n2

(n1 ·q)(n2 ·q)
+

(
CF − 1

2
CA

)
nJ ·n1

(nJ ·q)(n1 ·q)
+

1

2
CA

nJ ·n2

(nJ ·q)(n2 ·q)

]
. (65)

So the calculation boils down to the evaluation of the integral

IS(k) = µ2ε

∫
ddq δ(q2) θ(q0)

na ·nb

(na ·q)(nb ·q)
δ(k − nc ·q) (66)

which we need both in the case when nµ
c = nµ

a and in the case when nµ
c is different from both

nµ
a and nµ

b .
To evaluate the integral, we write

qµ = q+
nµ
a

nab

+ q−
nµ
b

nab

+ qµ⊥ , (67)

with na ·q⊥ = nb ·q⊥ = 0 and nij ≡ ni ·nj . In this basis,

nµ
c =

nbc

nab

nµ
a +

nac

nab

nµ
b + nµ

c⊥ . (68)

Rewriting the phase-space integration as an integral over the light-cone components and inte-
grating over |q⊥| in d = 4− 2ε dimensions, we find

IS(k) =
1

2
µ2ε

(
nacnbc

2nab

)ε ∫
dΩd−2

∫
dq+dq−
(q+q−)1+ε

δ(k − q− − q+ + 2
√
q+q− cos θ) , (69)

where θ is the angle between ~n⊥
c and ~q⊥. The prefactor shows that unless the three light-

cone vectors are distinct the integral is scaleless and vanishes. Parameterizing q+ = kyx and
q− = kyx̄ = ky(1− x) and integrating over y gives

IS(k) =
1

2

(
nacnbc

2nab

)ε
µ2ε

k1+2ε

∫
dΩd−2

∫ 1

0

dxx−1−ε x̄−1−ε(1 + 2
√
xx̄ cos θ)2ε . (70)

We can use that the integral is symmetric under x → x̄ to integrate only from x = 0 . . . 1
2
.

Divergences then appear only in the integration region around x = 0. After rescaling x→ x/2,
the integral can be expanded in ε, using the fact that

x−1−ε = −1

ε
δ(x) +

[
1

x

]

+

− ε

[
ln x

x

]

+

. . . . (71)

The result is

IS(k) =
2π

k

(µ
k

)2ε
(
nacnbc

2nab

)ε [
−1

ε
+
π2

12
ε+O(ε2)

]
. (72)

To expand this result in ε, we use

1

k

(µ
k

)2ε

= − 1

2ε
δ(k) +

[
1

k

][k,µ]

⋆

− 2ε

[
1

k
ln
k

µ

][k,µ]

⋆

+ · · · . (73)
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These star-distributions are like plus distributions for a dimensionful variable [54]. The su-
perscript, as explained in [26], makes explicit the singular variable and the upper limit of
integration: these distributions vanish when k is integrated integrated from 0 to µ.

Putting everything together, the soft functions Sqq̄ and Sqg to order αs are

Si(k, µ) = δ(k) +
(αs

4π

)
Ci






[
2 ln2

2n12

n1Jn2J
− π2

3

]
δ(k) +



16 ln

(
k
µ

√
2n12

n1Jn2J

)

k



[k,µ]

⋆





(74)

where the color factors for the two channels are

Cqq̄ = CF − 1

2
CA and Cqg =

1

2
CA . (75)

Note that the ln2 2n12

n1Jn2J
term would be absent if we rewrote the star-distribution entirely in

terms of k
√

2n12

n1Jn2J
rather than k.

To get the higher order soft function we use the constraint of RG invariance to express the
soft anomalous dimension in terms of the other anomalous dimensions (see Eq. (104) below):

γSqg = γH − γJq + γfg + γfq . (76)

Since the three-loop hard, quark-jet, and PDF anomalous dimensions are known, this gives us
γSqg to three loops. Casimir scaling, which is known to hold up to at least three loops, then
determines the other soft function anomalous dimension to three loops as well:

γSqq̄ =
2CF − CA

CA
γSqg . (77)

The resummation of the soft functions, from µs to µ follows from solving its RG equation
in Laplace space, as in [16]. The result is

Si(k, µ) = exp[−4CiS(µs, µ) + 2ASi
(µs, µ)]s̃i(∂ηsi )

1

k

(
k

µs

√
2n12

n1Jn2J

)ηsi e−γEηsi

Γ(ηsi )
, (78)

with
ηsi = 4CiAΓ(µs, µ) .

The Laplace transform s̃(L) is given in Appendix A.

4.3 Jet functions

The quark jet function is known completely to two loops [55], and its anomalous dimension
to three loops [17]. To order αs, it is

Jq(p
2, µ) = δ(p2) +

(αs

4π

)



[
CF

(
7− π2

)]
δ(p2) +

[
4CF ln p2

µ2 − 3CF

p2

][p2,µ2]

⋆



 . (79)
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X X X X X X

X X X X X X

Figure 2: Diagrams contributing to the gluon jet function at NLO. The usual gluon self-energy
contributions are represented by the first graph. In the remaining diagrams gluons are emitted
from one of the Wilson lines, which are denoted by crosses.

The only place where the gluon jet function has appeared previously is in the analysis of
quarkonium production [40, 41, 42]. In [42], its one-loop anomalous dimension was calculated.
Here, we will compute the full order αs gluon jet function and derive its anomalous dimension
to order α3

s, although for NNLL resummation we only need the α2
s result.

The gluon jet function is defined by

〈0| Aa
J
µ
⊥(x)Ab

J

ν

⊥(0) |0〉 = (−gµν⊥ ) δab g2s

∫
d4p

(2π)3
θ(p0) Jg(p

2) e−ipx . (80)

The strong coupling constant gs on the right-hand side is the bare coupling; the collinear
gluon fields were defined in Eq. (24). These collinear gluon operators only have non-vanishing
matrix elements for intermediate collinear states. Thus, this jet function can be thought of as
the result of integrating out the collinear modes at the scale µj. Equivalently, we can extract
the jet function from the imaginary part of the time-ordered product of collinear fields

1

π
Im

[
i

∫
d4x eipx〈0|T

{
Aa

J
µ
⊥(x)Ab

J

ν

⊥(0)
}
|0〉

]
= (−gµν⊥ ) δab g2s Jg(p

2) . (81)

This second definition shows that the jet function is given by the imaginary part of the
Feynman propagator in light-cone gauge, since in this gauge the Wilson lines in Eq. (24) are
absent.

The relevant diagrams in SCET are shown in Figure 2. In Feynman gauge all of the graphs
in the bottom row vanish. The first graph contributes to the wavefunction renormalization.
Since the collinear sector of SCET is equivalent to full QCD, this graph can be found in
textbooks. In units of the tree-level result, the graph gives

Ia =
αs

4π

(
µ2

−p2
)ε [(

5

3
CA − 4

3
TFnf

)
1

ε
+

31

9
CA − 20

9
TFnf

]
. (82)

The second and third diagrams have been computed in [56] and [57] in Feynman gauge. They
give

Ib = Ic =
αs

4π

(
µ2

−p2
)ε

CA

[
2

ε2
+

1

ε
+ 2− π2

6

]
. (83)
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Adding the contributions of both diagrams and taking the imaginary part of the propagator
using the relation

Im
[
(−p2 − iǫ)−1−ε

]
= − sin(πε)(p2)−1−ε , (84)

we obtain the bare NLO gluon jet function. The jet function can be expanded in distributions
in analogy to the soft function, see Eq. (73). Renormalizing the jet function in the MS scheme,
we then find

Jg(p
2, µ) = δ(p2) +

(αs

4π

)




[
CA

(
67

9
− π2

)
− 20

9
TFnf

]
δ(p2) +

[
4CA ln p2

µ2 − β0

p2

][p2,µ2]

⋆



 .

(85)
We have also computed all graphs in Rξ gauge and in light-cone gauge and have checked

that the result for the gluon jet function is gauge invariant. In light-cone gauge, the Wilson
lines WJ(x) defined in Eq. (25) are equal to 1 and the calculation is particularly simple, since
only the first diagram contributes. The free light-cone propagator is

Gµν(p) =
i

p2 + iε

[
−gµν +

nµpν + nµpν
n ·p+ iε

]
. (86)

Note that the Mandelstam-Leibrandt (ML) prescription to regulate the n ·p → 0 singularity
is not appropriate for SCET. The ML prescription

1

n ·p → n̄ ·p
n ·p n̄ ·p+ iε

(87)

cures the collinear singularity in the propagator, but in our case this singularity has a physical
meaning. The Wilson line and the associated light-cone propagators arise from expanding
QCD diagrams around the large-energy limit and the choice of the +iǫ prescription is dictated
by the QCD diagrams. The loop integrals contributing to the jet function are unambiguously
defined in dimensional regularization. They depend on a single four momentum pµ. If a given
loop integral involves m light-cone propagators it scales as (n · p)−m so that the final result
of the integral is independent of the sign of the iε prescription adopted for the light-cone
propagator.

To get the gluon anomalous dimension to higher order, we note that RG invariance for the
qq̄ → γg channel implies (see Eq. (103) below)

γJg = 2γfq − γSqq̄ + γH . (88)

Since the PDF, hard, and soft anomalous dimensions are known to three loops, this fixes the
gluon jet anomalous dimension to three loops as well. The result is given in Appendix A.

The RG equations for the jet functions from µj to µ are solved with Laplace techniques [16].
The results are

Jq(p
2, µ) = exp[−4CFS(µj, µ) + 2AJq(µj, µ)]̃jq(∂ηjq )

1

p2

(
p2

µ2
j

)ηjq e−γEηjq

Γ(ηjq)
, (89)
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Jg(p
2, µ) = exp[−4CAS(µj, µ) + 2AJg(µj, µ)]̃jg(∂ηjg )

1

p2

(
p2

µ2
j

)ηjg e−γEηjg

Γ(ηjg)
,

where
ηjq = 2CFAΓ(µj, µ) and ηjg = 2CAAΓ(µj, µ) .

The Laplace transforms j̃(L) are given in Appendix A.

4.4 Final resummed distribution in SCET

With the hard, jet and soft functions in hand, we can now combine them together to form the
differential inclusive photon distribution. Using the factorization formula, Eqs. (54)-(55) with
the notation of Eq. (15), the partonic cross section in SCET takes the form of Eq. (19):

d2σ̂

dwdv
= wσ̃(v)H(pT , v, µ)

∫
dkJ(m2

X − (2EJ)k, µ)S(k, ni, µ) . (90)

We will now perform this convolution.
First, note the soft function can depend, in general, on any dimensionless ratio of dot

products of the directions ni. However, in Section 4.2, we saw that in the formula for the
resummed soft functions, Eq. (78), the only combination which appeared is 2n12

n1Jn2J
. This ratio

can be written in the suggestive form

2n12

n1Jn2J
=

(2EJ)
2ŝ

t̂û
=

(2EJ)
2

p2T
. (91)

Since the soft function is, to all orders, 1
k
times a function of k

√
2n12

n1Jn2J
, if we rescale k → k

EJ

in Eq. (90), all of the EJ and ni dependence completely disappears, as it must.
The exact solutions of the RG equations for the soft and jet functions given in Eqs. (78)

and (89) involve derivatives acting on a kernel which is just the relevant scale raised to a
power. Because of this simple form, the convolution in Eq. (90) can be performed analytically.
In the annihilation channel, the result is

d2σ̂

dwdv
= wσ̂qq̄(v) exp [(4CF + 2CA)S(µh, µ)− 4CAS(µj, µ) + (2CA − 4CF )S(µs, µ)]

× exp
[
−2AH(µh, µ) + 2AJg(µj, µ) + 2ASqq̄(µs, µ)

]
(92)

× (vv̄)2CFAΓ(µh ,µ)

(
p2T
µ2
h

)−(2CF+CA)AΓ(µh ,µ)( µ2
j

pTµs

)(4CF−2CA)AΓ(µs ,µ)

× αs(µh)

αs(µ)
Hqq̄(pT , v, µh)j̃g(∂ηqq̄ , µj)s̃qq(ln

µ2
j

pTµs
+ ∂ηqq̄ , µs)

1

m2
X

(
m2

X

µ2
j

)ηqq̄ e−γEηqq̄

Γ(ηqq̄)
,

where
ηqq̄ = ηjg + ηsqq̄ = 2CAAΓ(µj, µ) + (4CF − 2CA)AΓ(µs, µ) .
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For the Compton channel,

d2σ̂

dwdv
= wσ̂qg(v) exp [(4CF + 2CA)S(µh, µ)− 4CFS(µj, µ)− 2CAS(µs, µ)]

× exp
[
−2AH(µh, µ) + 2AJq(µj, µ) + 2ASqg(µs, µ)

]
(93)

× (v2CA v̄2CF )AΓ(µh,µ)

(
p2T
µ2
h

)−(2CF+CA)AΓ(µh,µ)( µ2
j

pTµs

)2CAAΓ(µs,µ)

× αs(µh)

αs(µ)
Hqg(pT , v, µh)j̃q(∂ηqg , µj)s̃qq(ln

µ2
j

pTµs

+ ∂ηqg , µs)
1

m2
X

(
m2

X

µ2
j

)ηqg e−γEηqg

Γ(ηqg)
,

where
ηqg = ηjq + ηsqg = 2CFAΓ(µj , µ) + 2CAAΓ(µs, µ) .

With these closed form expressions, it is straightforward to evaluate the differential cross
section numerically.

5 Cross-checks

Next, we perform some non-trivial cross checks on the factorization theorem. First, we show
that in the threshold limit, the expression is RG invariant, that is, independent of µ. Then
we will show that the singular parts of the fixed order expansion agree with the exact NLO
differential distribution. We also generate all the plus distribution terms in 1 − w to NNLO,
and compare to previous results.

In traditional approaches, one has access to only the renormalization scale µR, where αs

is evaluated, and the factorization scale, µf , where the PDFs are evaluated. In the SCET
approach, there are four scales: the hard matching scale µh, where the hard modes of QCD
are integrated out, the jet scale, µj, where the collinear modes are integrated out, the soft
scale µs, where the soft modes are integrated out, and the factorization scale µf , where the
PDFs are evaluated. In contrast to the scale µR, the scales coming from the effective field
theory calculation are all guaranteed to have natural values, since the calculation has been
factorized into a series of single-scale problems. When combining the RG evolved hard, jet,
and soft functions with the PDFs, one evolves all of them to a common reference scale µ.

To check RG invariance, we evaluate the factorization theorem for a fixed scale µh =
µj = µs = µf = µ and then show that the cross section is µ-independent. To do so, we
must expand around the physical, observable machine threshold, M2

X → 0, not the partonic
threshold mX → 0, since mX gets integrated over. Recalling Eq. (14), the invariant mass of
the hadronic final state is

M2
X = m2

X +
p2T
vv̄

[
(1− x1)v + (1− x2)v̄

]
+ · · ·

near the threshold. Since the SCET operators do not mix, the contributions of different
partonic channels are separately RG invariant. For the annihilation channel, we have
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d2σqq̄
dM2

Xdy
∝

∫
dx1

∫
dx2

∫
dm2

∫
dkfq/N1

(x1, µ)fq̄/N2
(x2, µ)Hqq̄(pT , v, µ)Jg(m

2, µ)Sqq̄(k, µ)

× δ

[
M2

X −
(
m2 + (2EJ)k +

p2T
v̄
(1− x1) +

p2T
v
(1− x2)

)]
. (94)

We write the right-hand side in terms of v, which is implicitly a function of y, x1, x2 and mX

to make contact with the partonic expressions in the previous section. In this form, we can
read off that M2

X → 0 enforces m2 → 0, k → 0, x1 → 1 and x2 → 1 so all the various objects
approach singular limits.

Since all the objects are convoluted together in this simplified factorization theorem, it
makes sense to check RG invariance in Laplace space, which turns the convolution into a
product. We define the Laplace transformed cross section as

d2σ̃

dQ2dy
=

∫ ∞

0

dM2
X exp

(
− M2

X

Q2eγE

)
d2σ

dM2
Xdy

. (95)

Absorbing eγE into this definition avoids a proliferation of γE’s in the Laplace transformed
expressions. The Laplace transforms of the soft and jet functions are defined analogously (see
Eqs. (128) and (133) in Appendix A).

For the RG evolution of the PDFs, we can use simplified Altarelli-Parisi equations near
the endpoint. For the quark PDF,

dfq/N(x, µ)

d lnµ
= 2γfqfq/N(x, µ) + 2CFγcusp(α)

∫ 1

x

dx′
fq/N (x

′, µ)− fq/N(x, µ)

x′ − x
. (96)

The Laplace transform

f̃q/N (τ, µ) =

∫ 1

0

dx exp

(
−1 − x

τeγE

)
fq/N(x, µ) (97)

then satisfies
df̃q/N (τ, µ)

d lnµ
=

[
2CFγcusp ln (τ) + 2γfq

]
f̃q/N(τ, µ) . (98)

The gluon PDF equation is the same with CF → CA and γfq → γfg . The Laplace transforms
of the gluon jet function satisfies

d

d lnµ
j̃g(Q

2, µ) =

[
−2CAγcusp ln

(
Q2

µ2

)
− 2γJg

]
j̃g(Q

2, µ) . (99)

The quark jet function is the same with CA replaced by CF and γJg replaced by γJq . The qq̄
soft function satisfies

d

d lnµ
s̃qq̄(κ, nij , µ) =

[
(−4CF + 2CA)γcusp ln

(
κ

µ

√
2n12

n1Jn2J

)
− 2γSqq̄

]
s̃qq̄(κ, nij, µ) , (100)
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where nij ≡ ni · nj as before. The other soft function, Sqg, is the same with −4CF + 2CA

replaced by −2CA and γSqq̄ replaced by γSqg . Finally, the hard function satisfies,

dHqq̄(pT , v, µ)

d lnµ
=

[
(2CF + CA)γcusp ln

p2T
µ2

− γcusp ln(v
2CF v̄2CF ) + 2γH

]
Hqq̄(pT , v, µ) . (101)

The function Hqg(pT , v, µ) is related to Hqq̄(pT , v, µ) by crossing. Its anomalous dimension can
be obtained from the above equation by replacing v2CF → v2CA .

Putting everything together, RG invariance requires

d

d lnµ

[
Hqq̄(pT , v, µ)j̃g(Q

2, µ)s̃qq̄

(
Q2

2EJ
, nij , µ

)
f̃q/N1

(
Q2

p2T
v̄, µ

)
f̃q̄/N2

(
Q2

p2T
v, µ

)]
= 0 . (102)

This equation imposes several constraints on the terms proportional to the universal cusp
anomalous dimension γcusp, since the µ, pT , EJ , nij and v-dependence must all vanish. Using
the above equations and the relationship between nij , EJ and pT in Eq. (91), we find that
these constraints all hold. For the non-cusp pieces of the anomalous dimension, Eq. (102)
implies

2γfq − γJg − γSqq̄ + γH = 0 . (103)

The corresponding relation in the Compton channel reads

γfq + γfg − γJq − γSqg + γH = 0 . (104)

We have calculated all these anomalous dimensions to order αs, verifying these relations.
Another way to check RG invariance is order-by-order in αs (cf. Ref. [26] for a similar

example). First by expanding the resummed hard, jet and soft functions, from Eqs. (61), (89),
and (78) it is easy to check that the matching scales µh, µj and µs cancel between the fixed
order expansions, such as H(pT , v, µh) and the evolution kernels, such as the exp(S(µh, µ))
factors in Eq. (61). To combine the ingredients together to check the overall µ dependence
at order αs, we would also need a perturbative expression for the PDFs, which is impossible
since they are non-perturbative. However, since RG invariance should hold with any PDFs,
a simple trick is to use toy-model PDFs with a convenient form. For example, we can define
the quark PDF so that fq/N (x, µ0) = δ(1− x) to all orders at the scale µ0. Then, to order αs,
this PDF at the scale µ is

fq(x, µ) = δ(1− x) +
(αs

4π

)[
−3CF ln

µ2
0

µ2

]
δ(1− x) +

(αs

4π

)

−4CF ln

µ2
0

µ2

1− x



+

. (105)

The gluon PDF is the same with 3CF → β0 and 4CF → 4CA. Then one can convolute these
simple PDFs together with the NLO hard, jet, and soft functions to verify µ independence to
order αs.

Finally, the fixed order expressions for hard, jet, and soft functions when combined at
the scales µh = µj = µs = pT , should reproduce all the singular terms in the exact parton
level NLO amplitudes from the full standard model. The results for these singular terms are
presented in Appendix B and agree precisely with [3]. In addition, working to order α2

s, we can
derive all of the terms singular in 1−w at NNLO. Previous results with NLL resummation [9]
were able to predict only some of these singularities.
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Figure 3: Size of the hard and jet function one-loop corrections as a function of the scale for
different values of pT at ECM =1960 GeV. The right panel shows the optimal scale choice at
different pT , with the dashed lines denoting our default choice, Eq. (107).

6 Scale choices and matching

While the resummed result is formally independent of the scales µh, µj , and µs, there is
residual higher-order dependence on these scales if the perturbative expansions of the hard,
jet and soft functions are truncated at a finite order. To get a well behaved expansion, we want
to evaluate each contribution at its natural scale, where it does not involve large perturbative
logarithms. In a fixed order calculation, the presence of several scales can preclude such a
choice, but since the hard jet and soft functions each only depend on a single scale, we are
guaranteed that there are scale choices for which large logarithms are absent.

By examining the form of the resummed distribution, Eqs. (92) and (93), it can be seen
that the hard, jet and soft scales appear in the cross section only through the combinations

p2T
µ2
h

,
m2

X

µ2
j

,
m2

X

pTµs
. (106)

Picking µh = pT , µj = mX and µs = m2
X/pT as the canonical scales would guarantee the

absence of large logarithms, but this choice is problematic. To see the problem, recall that

m2
X = 1

w

p2T
v̄
(1 − w), and the parton-level distribution is singular at w = 1. This singularity

is integrated over since the hadronic final states are integrated over, and the final photon pT
spectrum is completely regular. Near w ∼ 1, the mass of the partonic final state mX becomes
small and with the choice µj = mX the coupling constants αs(µj) and αs(µs) are evaluated
at arbitrarily low scales. Because of the Landau pole singularity of the running coupling the
convolution integrals are then no longer well-defined. The w ∼ 1 part of the integrand is
suppressed by the resummation, and the contribution from this region of the integral should
only amount to a power-suppressed correction to the overall result. However, the spurious
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Figure 4: Determination of µj . On the left is the relative cross section for variations of µj

around µj = pT for ECM=1960 GeV. The other scales are chosen to be µh = µf = pT and
µs = µ2

j/µh. On the right, the values of µj which minimize the scale variation at various pT ’s
are shown for the Tevatron and the LHC. The solid lines show a linear regression to the points,
and the dashed line is our default choice, Eq. (107).

power corrections arising in the integration can be of a lower order (and thus of larger size)
than the physical power corrections to the factorization theorem [58].

In [59] it was argued that these spurious singularities are particularly strong in momentum
space and that it is therefore preferable to perform resummation in moment space. However,
the effective theory framework allows us to completely avoid the need to evaluate the coupling
at unphysically small scales. It is not necessary to eliminate the logarithms in the partonic
cross section, what matters is that the final physical cross section is free of large logarithms.
Instead of choosing the jet scale µj at the integrand level we should choose the scale after the
convolution with the PDFs. That is, instead of setting µj = mX , the appropriate jet scale is
something like the average mass of a jet contributing to the cross section.

To get a sense of what an appropriate average jet scale should be, let us consider some
limits. At very large pT , the relevant scale in the physical cross section is the mass of the
hadronic final state, so the choice µ2

j ∼ M2
X = E2

CM(1− pT/p
max
T ) is appropriate. However, at

moderate pT , which is relevant in practice, the appropriate scale choice is less clear. In this
case, the partonic mass mX at a given pT value can vary kinematically over a large range,
0 < mX < MX , but the fall-off of the PDFs near x → 1 suppresses the region of large MX

and hence of large mX as well. Consequently, the partonic threshold region of small mX

is enhanced. This dynamical enhancement of was pointed out by [6, 7] and was studied in
detail [20] for the case of Drell-Yan production. It was found that this enhancement is mostly
effective for relatively high Drell-Yan masses, which corresponds to high pT in our case.

Since we cannot perform the convolution integrals analytically, we will determine the ap-
propriate choice of µj numerically, following two different procedures. On the one hand, we
can study the size of the corrections which arise at the different scales. Once the scale is
chosen appropriately, no large logarithms and associated large corrections should arise. To
study the size of the corrections, we take the factorized cross section, Eq. (19), as a function
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Figure 5: Reduction of the factorization scale dependence through matching. The dotted lines
show the µf scale uncertainty of the unmatched NNLL result, the red lines show the NLO
uncertainty, and the green band shows the µf uncertainty on NNLL matched to NLO. This is
for pp̄ collisions at ECM = 1960 GeV integrated over −0.9 < y < 0.9.

of µ, integrate over the partonic phase space, and compare the tree-level value to the result
obtained after including the one-loop corrections to either the hard, jet, or soft function. The
result is shown in Figure 3. The figure shows that the hard corrections are moderate if they
are evaluated at µh ∼ pT , as expected. The jet function corrections are small at a lower value.
Looking at the middle panel, we find that the choice µj ∼ pT

2
is reasonable for small pT . For

larger values of pT , the the optimal scale µj is lower than
pT
2
. To be concrete, let us define the

optimal scale as the scale which minimizes (or in the case of the hard function maximizes) the
correction. The right-hand panel shows that the choices

µh = pT ,

µj =
pT
2

(
1− 2

pT
ECM

)
, (107)

provide a good approximation to the optimal scale choice as a function of pT . For the soft
scale, we choose µs = µ2

j/µh as our default choice and we have checked that the corrections
are moderate for this scale choice. The plots in Figure 3 are for the Tevatron case, but we
have also checked that the above scale choices are also valid at the LHC, and that the optimal
scales for the qq̄ and qg channels are compatible.

The reasoning behind the above procedure for choosing the scale is that there are no large
logarithms and thus no large corrections if the scale is chosen appropriately. Another criterion
for a good scale choice is that the residual scale dependence should be small. To explore this,
we set µh = µf = pT and µs = µ2

j/µh so that the cross section only depends on the single
scale µj. We then choose µj such that the distribution is minimally sensitive to variations
in µj away from its canonical value. In the first panel of Figure 4 we show the photon pT
spectrum integrated over |y| < 1 at the Tevatron for various values of µj . For simplicity,
we normalize to the cross section at µj = pT , but since we are only interested in the scale
dependence, the normalization is arbitrary. The position of the maxima fit nicely along the
curve µj = 0.56(pT − 1.6 pT

ECM
). The same procedure at the LHC (14 TeV) gives a best fit
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Figure 6: Scale variations at the LHC (14 TeV). The lighter bands are NLL and the darker
bands are NNLL matched to NLO. The unmatched NNLL curves are shown as dotted lines.

µj = 0.57(pT − 1.9 pT
ECM

). In the right panel, we show these points, the fits, and our simple
scale choice, Eq. (107). It is comforting that also this criterion leads to similar results.

So that the results from SCET agree with the NLO partonic cross section in the appropriate
limit, power corrections must be added through matching. Because of the peculiar kinematics
of the threshold limit, this must be done with some care. The factorization theorem in SCET
is derived in the limit where the momentum fractions x1 and x2 of the incoming partons, and
the partonic threshold variable w, are all close to 1. The resummed cross section is therefore
only formally µf independent for very large pT , in contrast to the fixed-order cross section,
which has additional terms to cancel the µf dependence exactly, but only works to order αs.
These additional terms are not singular in the threshold variables and therefore not reproduced
by the leading-power factorization theorem. In the phenomenologically relevant regime, x1, x2
and w may not be close to 1, and the residual scale dependence might not be small. This NLO
part of the µf sensitivity can be removed as we match to the NLO partonic cross section, if
the factorization scale in the NLO cross section is varied appropriately. For the matching, we
use

(
d2σ

dvdw

)matched

=

(
d2σ

dvdw

)NNLL

−
(

d2σ

dvdw

)NNLL

µh=µj=µs=µf

+

(
d2σ

dvdw

)NLO

µf

. (108)

The subscripts of the last two terms mean set all scales equal to the relevant value of µf . Having
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Figure 7: Direct photon distributions at the Tevatron, compared to SCET. Green bands are
scale uncertainty. On the left, comparison is made to CDF data. On the right, the rapidity
distribution is shown for pT = 200 GeV. The SCET prediction, matched to NLO, is compared
to the scale uncertainty on the NLO prediction (solid red lines) and to the PDF uncertainty
(dashed blue lines).

µf in the matching terms vary in this way significantly reduces the overall µf dependence,
as can be seen in Figure 5. This figure also shows that the factorization scale uncertainty at
large pT is smaller than the uncertainty on the NLO cross section, even without matching.

With the canonical scales and matching procedure established, we estimate the higher
order uncertainty by varying the scales by a factor of 1

2
to 2 around their default values. The

resulting uncertainties are shown in Figure 6. The overall uncertainty is dominated by the
factorization scale variation. The small bands from variations of µj and µs should be taken
with a grain of salt. The above discussion shows that our scale choice is close to the point
with minimal scale sensitivity, so that the scale variation might underestimate the higher order
corrections. Also, we observe that the one-loop corrections to the soft function happen to be
small in our case, much smaller than what was found in other applications.

7 Results

To compare to data, we need to deal with the important experimental issue of photon isolation.
To account for isolation we use the Monte Carlo program jetphox. This program includes
both the NLO partonic cross section and a fragmentation contribution, applying a user-defined
isolation criteria. To correct the SCET distributions for isolation, fragmentation, and finite
NLO effects, we match to jetphox, i.e. we use the output of this program for the NLO cross
section in the matching relation Eq. (108). To compare to the D0 data [60], we attempt to
match their isolation criterion by demanding less than 10% of the energy in a cone of R = 0.4
around the photon be hadronic. For the CDF data [61, 62], we require less than 2 GeV of
energy inside the R = 0.4 cone. Some studies of sensitivity to isolation parameters can be
found in [61] and we do not attempt to reproduce them here.

In addition, we apply to all the Tevatron theoretical calculations an overall rescaling
of 0.913 (taken from [61, 62]) to account for underlying event, multiple interactions, and
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Figure 8: Fixed order and resummed comparison to D0 and CDF data. Left plots show
the LO and NLO scale uncertainties. Right plots show the SCET predictions with NLL
resummation or with NNLL resummation matched to fixed order. The dashed blue lines are
PDF uncertainties. The curves are all corrected for isolation, fragmentaion, and hadronization
as described in the text, while the reference distribution dσ

(dir)
NLO is the fully inclusive NLO

distribution without corrections.

hadronization. The D0 data corresponds to 380 pb−1 of integrated luminosity at ECM = 1960
GeV, integrated over −0.9 < y < 0.9. The CDF data corresponds to 2.5 fb−1 of integrated
luminosity at ECM = 1960 GeV, integrated over −1 < y < 1. For all calculations, including
jetphox and scale uncertainties, we use the MSTW 2008 NNLO PDFs [63]. The rationale
behind this choice is that our calculation includes the dominant NNLO corrections.

The scale uncertainties for the fixed order result include variation of the factorization
scale µf , the renormalization scale µR, and a fragmentation scale M ′. The fragmentation
scale is related to collinear singularities in final state photon emission from, for example, qq̄
final states, which are relevant starting at NLO. For simplicity, we call all these scales µ
and vary them together. We define the NLO uncertainty as the maximum and minimum
value of the prediction from varying these scales between 1

2
pT < µ < 2pT . For the SCET

prediction, we vary the jet, hard, soft and factorization scales. The largest uncertainty is
from the factorization scale variation, even after the proper matching to NLO (see previous
section), and so we use the µf dependence for the SCET uncertainty bands. Again, we take
the maximal and minimal values along the range 1

2
pT < µf < 2pT .
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Figure 9: Predictions for the inclusive direct photon distribution at the LHC. Left plots
show the LO and NLO scale uncertainty. Right plots show the SCET predictions with NLL
resummation or with NNLL resummation matched to fixed order. The dashed blue lines are
PDF uncertainties. No correction for isolation or hadronization is included. In contrast to
Figure 8, here NLO refers to the inclusive direct photon distribution whose central value is
identical to the reference distribution dσ

(dir)
NLO.

Figure 7 shows the pT and rapidity distributions at the Tevatron. The pT distribution is
compared to CDF data [61, 62] and the rapidity distribution only to the inclusive NLO result
and the PDF uncertainties. No comparison to data has been made in the rapidity plot because
all of the published Tevatron data differential in the photon rapidity is differential in the jet
rapidity as well, for which our factorization theorem does not apply. Nevertheless, such a
comparison would be interesting as there is a significant discrepancy between the SCET result
and the NLO prediction.

For more detail, we show in Figure 8 the normalized pT spectra and compare to CDF [61,
62] and D0 data [60]. In this figure and in the LHC plots in Figure 9, we normalize to
σNLO, the inclusive NLO direct photon cross section, without isolation cuts and fragmentation
contributions, evaluated with the default scale choices. The left plots show the LO and
NLO distributions, matched to jetphox, with the blue dashed lines indicating NLO PDF
uncertainties (from the MSTW 2008 NNLO PDFs). The right plots show the predictions from
SCET at NLL and NNLL, also matched to jetphox, with the appropriate PDF uncertainties
included as well. Note that at high pT , the scale uncertainty for the SCET result is smaller
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than the PDF uncertainty, while for the jetphox, NLO result, it is not.
Figure 9 shows the SCET prediction at the LHC, with ECM = 14 TeV and ECM = 7 TeV,

integrated over −1 < y < 1. The two energies give results that are qualitatively very similar,
but of course, the higher energy machine would be capable of producing higher pT photons.
Note the large PDF uncertainties at high pT . These distributions indicate that the quark,
antiquark, and gluon PDFs at large x can be measured effectively with direct photon produc-
tion at the LHC. The PDF uncertainties are slightly larger with the SCET cross section than
with the NLO cross section, due to slightly different scales and x-values where the PDFs are
evaluated.

8 Conclusions

We have shown how to resum the direct photon distribution using Soft-Collinear Effective The-
ory. This is the first physical process calculated in SCET involving more than two collinear
directions. The factorization theorem we derived passes a number of non-trivial checks. In
particular, renormalization scale independence arises only after a cancellation of the depen-
dence on angles ni·nj appearing in the soft function against ŝ, t̂, and û dependence in the hard
function. We have calculated all the relevant objects to one loop, showing that the dependence
on the various kinematic variables is indeed of the right form for the factorization theorem to
hold.

Our closed-form expression for the distribution allows for straightforward numerical inte-
gration and comparison to data. The agreement with Tevatron data is very good, although
the comparison is complicated by the issue of photon isolation. However, the factorization
theorem holds at large pT , where the isolation is less relevant. We also show results at higher
center-of-mass energy, relevant for the LHC. There, we have found that the theoretical un-
certainty is much smaller than the PDF uncertainty. Thus, the resummed direct photon
distribution will be an effective tool for measuring the PDFs at the LHC. In addition, there
is a significant difference between the SCET prediction at high pT at the LHC and the NLO
prediction. This is not surprising as there are large logarithms in this region which SCET
resums to all orders. In particular, our NNLL resummed result has all the singular parts of
the partonic cross section at NNLO (except for the δ-function part, which is only incompletely
known). Based on experience with other processes, such as Drell-Yan or Higgs production,
our result is expected to provide a good approximation to the full NNLO cross section.

Besides being of phenomenological importance, the calculations in this paper are easily
generalizable to other fundamental processes at hadron colliders. The obvious example is W
or Z production at high pT . For this case, the factorization theorem is identical. The jet
and soft functions are also the same, and the hard function is the same up to corrections
finite in mZ and mW . Since W/Z production is free of the complication of photon isolation,
it is cleaner phenomenologically. We are currently pursuing the analysis and will present
our results elsewhere. For direct photon production, it would also be interesting to treat
the photon isolation cut in the effective theory, since it is known that the corresponding
perturbative expression involves large logarithms which make the fixed order calculation of
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this effect problematic [4].
The next steps in complexity are to consider distributions which are hadronically no longer

fully inclusive, and to include outgoing jets for the proton remnants. In either case, a modified
factorization theorem is needed. Including proton remnant jets is necessary to get away from
the end-point region where the leading partons carry almost all of the proton momentum.
To get to the phenomenologically more interesting region of moderate momentum fractions,
one needs to account for the energetic partons down the beam pipe, a problem which has
only recently been considered in SCET [64]. Given the progress in this field over the past few
years, it now becomes possible to analyze also complicated collider processes with effective field
theory, in particular processes with several hadronic jets and nontrivial kinematical restrictions
on the hadronic final state.
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A Fixed Order Expansions

In our notation, all the anomalous dimensions are expanded as series in αs

4π
.

The QCD β function is

β(αs) = −2αs

[(αs

4π

)
β0 +

(αs

4π

)2

β1 +
(αs

4π

)3

β2 + · · ·
]
, (109)

where

β0 =
11

3
CA − 4

3
TFnf , (110)

β1 =
34

3
C2

A − 20

3
CATFnf − 4CFTFnf , (111)

β2 =
2857

54
C2

A +

(
2C2

F − 205

9
CFCA − 1415

27
C2

A

)
TFnf +

(
44

9
CF +

158

27
CA

)
T 2
Fn

2
f . (112)

The four-loop coefficient β3 is known as well [65, 66], and can be found for example in [17].
The cusp anomalous dimensions is

γcusp(α) =
(αs

4π

)
Γ0 +

(αs

4π

)2

Γ1 +
(αs

4π

)3

Γ2 + · · · , (113)
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where

Γ0 = 4 , (114)

Γ1 = 4

[
CA

(
67

9
− π2

3

)
− 20

9
TFnf

]
, (115)

Γ2 = 4

[
C2

A

(
245

6
− 134π2

27
+

11π4

45
+

22

3
ζ3

)
+ CATFnf

(
−418

27
+

40π2

27
− 56

3
ζ3

)
(116)

+CFTFnf

(
−55

3
+ 16ζ3

)
− 16

27
T 2
Fn

2
f

]
. (117)

The anomalous dimensions describing the evolution of the quark and gluon PDFs near
x = 1 are

γ
fq
0 = 3CF , (118)

γ
fq
1 = C2

F

(
3

2
− 2π2 + 24ζ3

)
+ CFCA

(
17

6
+

22π2

9
− 12ζ3

)
− CFTFnf

(
2

3
+

8π2

9

)
, (119)

γ
fg
0 = β0 , (120)

γ
fg
1 = C2

A

(
32

3
+ 12ζ3

)
− 16

3
CATFnf − 4CFTFnf , (121)

The three loop splitting functions were calculated in [67, 68]. Explicit expressions for anoma-

lous dimensions γ
fq
2 and γ

fg
2 at three loops can be found in [20, 23].

The hard function can be written as

H(pT , µ, v) = h(ln
p2T
µ2
, v) . (122)

To order α2
s, it is

h (L, v) = 1 +
(αs

4π

){
−ΓH

0

L2

2
+ (Γ0L

H
v − γH0 − β0)L+ cH1 (v)

}
(123)

+
(αs

4π

)2
{(

ΓH
0

)2 L4

8
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4β0 − 3Γ0L

H
v + 3γH0

)
ΓH
0
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6
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[
−ΓH

1 − cH1 (v)Γ
H
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v Γ0 + γH0 )(2β0 − LH
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] L2

2

+
[
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H
0 − γH1 + cH1 (v)Γ0L

H
v + Γ1L

H
v

]
L+ cH2 (v)

}
.

As described in Section 4, the anomalous dimensions can be extracted from the general result
[37]. Explicity,

ΓH =

(
CF +

1

2
CA

)
γcusp , (124)
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γH0 = −β0 − 6CF , (125)

γH1 =

(
256

27
− 2π2

9

)
CAnfTF +

(
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27
+

4π2

3
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CFnfTF +
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27
− 11π2

3
+ 52ζ3

)
CACF .

The three loop anomalous dimension for the hard function is just γH2 = 2γq2 + γg2 , where the
anomalous dimensions γq and γg were defined and given to three loops in [37].

The v-dependence is different in the two channels. It shows up in the functions LH
v and

the constants cHj . For the annihilation channel, we find

LHqq̄

v = CF ln(vv̄) , (126)

c
Hqq̄

1 (v) =
−336 + 65π2

18
− 17

3
ln v ln v̄ +

1

6
ln2(vv̄)− 11

3
ln(vv̄)

+
(−3 + 2v) ln2 v̄ + (48v − 26) ln v̄ + (22− 48v) ln v + (−1 − 2v) ln2 v

6(v2 + v̄2)
,

and for the Compton channel,

LHqq̄

v = CA ln(v) + CF ln(v̄) , (127)

c
Hqg

1 (v) =
−336 + 59π2

18
− 14

3
ln v ln v̄ − 7 ln2 v − 1

3
ln2 v̄ − 8 ln(vv̄)

+
(3− 2v)π2 + 4v̄ ln v(ln v − 1) + (3− 2v) ln v̄(ln v̄ − 2 ln v + 1) + 23 ln v̄

3(1 + v̄2)
.

The solution of the RG equation for the jet function is given in terms of its Laplace
transform

j̃(Q2, µ) =

∫ ∞

0

dp2 exp

(
− p2

Q2eγE

)
J(p2, µ) . (128)

This Laplace transform has a perturbative expansion in αs which only depends on the dimen-
sionless ration Q2/µ2. Writing j̃(Q2, µ) = j̃(L), where L = log Q2

µ2 , the expansion becomes
very similar to that of the hard function

j̃(L) = 1 +
(αs

4π

)[
ΓJ
0

L2

2
+ γJ0L+ cJ1

]
+
(αs

4π

)2
[(
ΓJ
0

)2 L4

8
+
(
−β0 + 3γJ0

)
ΓJ
0

L3

6

+
(
ΓJ
1 + (γJ0 )

2 − β0γ
J
0 + cJ1Γ

J
0

) L2

2
+ (γJ1 + γJ0 c

J
1 − β0c

J
1 )L+ cJ2

]
. (129)

For the quark jet

ΓJq = CFγcusp , (130)
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γ
Jq
0 = −3CF ,

γ
Jq
1 = C2

F

(
−3

2
+ 2π2 − 24ζ3

)
+ CFCA

(
−1769

54
− 11π2

9
+ 40ζ3

)
+ CFTFnf

(
242

27
+

4π2

9

)
,

c
Jq
1 = CF

(
7− 2π2

3

)
.

The three loop anomalous dimension γ
Jq
2 and the two loop constant c

Jq
2 are also known [55],

but are not necessary for NNLL resummation. For the gluon jet

ΓJg = CAγcusp , (131)

γ
Jg
0 = −β0 ,

γ
Jg
1 = C2

A

(
−1096

27
+

11π2

9
+ 16ζ3

)
+ CAnfTF

(
368

27
− 4π2

9

)
+ 4CFTFnf ,

c
Jg
1 = CA

(
67

9
− 2π2

3

)
− 20

9
TFnf .

Since it is a new result, we also give the three-loop gluon-jet anomalous dimension:

γ
Jg
2 =

(
−331153

1458
+

6217π2

243
+ 260ζ3 −

583π4

270
− 64π2ζ3

9
− 112ζ5

)
C3

A (132)

+

(
42557

729
− 2612

243
− 16ζ3

27
+

154π4

135

)
C2

AnfTF +

(
3622

729
+

80π2

81
− 448ζ3

27

)
CAn

2
fT

2
F

+

(
4145

27
− 4π2

3
− 608ζ3

9
− 16π4

45

)
CACFnfTF − 2C2

FnfTF − 44

9
CFn

2
FT

2
F .

The soft function S(k, µ, nij) depends in addition to the scales k and µ on the angles
nij = ni ·nj between the Eikonal lines. However, this dependence must be universal for the
factorization theorem to hold. The Laplace transformed soft function

s̃(κ, µ, nij) =

∫ ∞

0

dk exp

(
− k

κeγE

)
S(k, µ, nij) (133)

has a perturbative expansion in αs which only depends on one dimensionless ratio. We can
write s̃(κ, µ, nij) = s̃(L) where

L = ln
k

µ

√
2(n1 ·n2)

(n1 ·nJ )(n2 ·nJ)
. (134)

The expansion is now similar to the hard or jet functions

s̃ (L) = 1 +
(αs

4π

) [
2ΓS

0L
2 + 2γS0 L+ cS1

]
+
(αs

4π

)2
[(
ΓS
0

)2
2L4 −

(
β0 − 3γS0

)
ΓS
0

4L3

3
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+2
(
ΓS
1 + (γS0 )

2 − β0γ
S
0 + cS1Γ

S
0

)
L2 + 2(γS1 + γS0 c

S
1 − β0c

S
1 )L+ cS2

]
. (135)

The coefficients in the annihilation channel are

ΓSqq̄ =

(
CF − CA

2

)
γcusp , (136)

γ
Sqq̄

0 = 0 ,

γ
Sqq̄

1 =

(
CF − 1

2
CA

)((
28ζ3 −

808

27
+

11π2

9

)
CA +

(
224

27
− 4π2

9

)
nfTF

)
,

c
Sqq̄

1 =

(
CF − CA

2

)
π2 .

The Compton channel is identical, but with the prefactor CF − 1
2
CA replaced by 1

2
CA. This is

a consequence of Casimir scaling, which holds at least to three-loop order.

B NLO and NNLO singular terms

To obtain the singular terms, the resummed results, Eqs. (92) and (93), should be expanded
order-by-order in αs. To do so, we set all the scales equal µh = µj = µs = µf = µ. In the
limit of equal scales, the various evolution factors S(ν, µ) and Aγ(ν, µ) and the quantities ηq̄q
and ηqg all vanish. Before setting the scales equal, we expand the kernel using

(1− w)−1+η =
1

η
δ(1− w) +

∞∑

n=0

ηn

n!

[
lnn(1− w)

1− w

]

+

, (137)

and perform the derivatives with respect to η. Then we take η → 0. The resulting expressions
are lengthy. To save space we only quote the result for µ = pT , for which we find

d2σ̂

dvdw
= σ̃(v)

[
δ(1− w) +

(αs

4π

){
δ(1− w)

[
cH1 (v) + cJ1 + cS1 − (γJ0 − γS0 ) ln v̄

+
1

2

(
ln2 v̄ − π2

6

)
ΓJS
0

]
+ (γJ0 + 2γS0 − ΓJS

0 ln v̄)

[
1

1− w

]

+

+ ΓJS
0

[
ln(1− w)

1− w

]

+

}

+
(αs

4π

)2
{
δ(1− w)A2 +

[
π2

3
β0Γ

0
S + (c1H(v) + c1S + c1J)(γ

0
J + 2γ0S)− β0(2c

1
S + c1J)

+
π2

12
ΓJS
0 (β0 − 3γ0J − 6γ0S) + 2γ1S + γ1J + (ΓJS

0 )2ζ3

− ln v̄

(
ΓJS
1 + ΓJS

0 (c1H(v) + c1J + c1S)−
π2

4
(ΓJS

0 )2 + (γ0J + 2γ0S)
2 − β0(γ

0
J + 4γ0S)

)
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− 1

2
ln2 v̄

(
4β0Γ

0
S + ΓJS

0 (β0 − 3γ0J − 6γ0S)

)
− 1

2
ln3 v̄(ΓJS

0 )2
] [

1

1− w

]

+

+

(
(cH1 (v) + cJ1 + cS1 )Γ

JS
0 + ΓJS

1 − π2

4
(ΓJS

0 )2 + (γJ0 + 2γS0 )
2

− β0(γ
J
0 + 4γS0 ) + ΓJS

0 (β0 − 3γJ0 − 6γS0 ) ln v̄ + 4β0Γ
S
0 ln v̄ +

3

2
(ΓJS

0 )2 ln2 v̄

)[
ln(1− w)

1− w

]

+

+

(
1

2
(3γJ0+6γS0−β0)ΓJS

0 −2β0Γ
S
0−

3

2
(ΓJS

0 )2 ln v̄

)[
ln2(1− w)

1− w

]

+

+
1

2
(ΓJS

0 )2
[
ln3(1− w)

1− w

]

+

}]
,

where
ΓJS = ΓJ + 4ΓS . (138)

This formula holds for either channel, with the appropriate σ̃(v) and hard, jet and soft function
coefficients. The coefficient A2 is not completely known, so we do not include our partial

results. We have checked that the O(αs) results agree with [3] and the α2
s

[
ln3(1−w)

1−w

]

+
and

α2
s

[
ln2(1−w)

1−w

]
+

results agree with [9]. We find a small discrepancy3 with these authors for

the α2
s

[
ln(1−w)
1−w

]
+
term in the Compton channel, but otherwise we confirm their results. The

α2
s

[
1

1−w

]
+
piece was not given in [9] because it requires NNLL resummation.
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