11 research outputs found

    The effect of using mixed initiator systems on the efficiency of photopolymerization of dental resins

    Get PDF
    A study was performed in order to determine the efficiency of the simultaneous use of the photoinitiators phenylpropanedione (PPD) and camphorquinone (CQ) in the polymerization of acrylic polymers and evaluate possible mechanisms leading to synergism or antagonism. It was found that efficiencies of both initiators taken individually are higher than that of their mixture, indicating that when both dyes are used simultaneously there will be an energy transfer from the more efficient initiator (CQ) to the less efficient one (PPD). Also, there was no proof of any reaction between the amine present in the CQ formulation and the PPD excited state.Foi realizado um estudo para determinar a eficiência da utilização simultânea dos fotoiniciadores fenilpropanodiona (PPD) e canforquinona (CQ) para a polimerização de polímeros acrílicos e avaliar possíveis mecanismos que levem à sinergia ou antagonismo. Foi encontrado que as eficiências de ambos iniciadores usados individualmente são maiores que a da mistura, indicando que quando os iniciadores são usados simultaneamente há uma transferência de energia do iniciador mais eficiente (CQ) para o menos eficiente (PPD). Também, não foi encontrada nenhuma evidência de reação entre a amina presente na formulação da CQ e o PPD no estado excitado.FAPESPCNP

    Thioxanthone Sensitized Photodegradation of Poly(alkyl methacrylate) Films

    No full text
    The thioxanthone-sensitized photodegradation of poly(alkyl methacrylate) films [alkyl = methyl, ethyl, butyl, and hexyl] was studied using near UV-vis light. The photooxidation process continued even after the total consumption of the sensitizer, possibly due to the excitation of the ketyl groups formed during the first stages of the process. The rate of oxidation, as well as the formation of hydroxy, peroxy, and ketyl groups was faster for polymers with larger ester groups. The decrease of the molecular weight of the degradated polymers was also larger for the hexyl substituted polymer. The side-chain size effect was attributed to the larger amount of secondary hydrogens available for abstraction by the triplet state of thioxanthone, present in the larger ester groups. The lower glass transition temperature of the hexyl substituted polymer allows a better diffusion of oxygen to the deeper layers of the films that also contributes to the faster photodegradation rate. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115: 1283-1288, 2010FAPESP, Brazil[03/07770-4]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP, Brazil[05/03692-4]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CNPq[471310/2006-9]Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESPFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Photodegradation of Polystyrene Films Containing UV-Visible Sensitizers

    Get PDF
    Abstract: The photodegradation of polystyrene films has been investigated in the presence of sensitizers such as benzophenone (BP) and thioxanthone (TX). The phototransformations were studied by infrared and UV-Vis spectroscopy. The results indicate that these photosensitizers accelerate and increase the efficiency of the photodegradation and the photo-oxidation processes in polystyrene and increase the formation of double bonds in the polymer. In all these process, TX showed a larger photosensitization efficiency than BP. Flash photolysis experiments indicate that the triplet reactivity of both sensitizers towards polystyrene are similar, so that the higher efficiency of thioxanthone when compared with benzophenone should be assigned to its larger absorptivity, as well as to the absorptivity of its degradation products in the irradiating region

    Ru/Pd Complex and Its Monometallic Fragments as Catalysts for Norbornene Polymerization via ROMP and Addition

    No full text
    The [Ru(PPh3)2Cl-piperidine(4-aminomethyl)] complex (mono-Ru) was synthesized from [Ru(PPh3)3Cl2] and 4-(aminomethyl)piperidine, whereas the [(PPh3)PdCl(Shiff-pip)] complex (mono-Pd) was obtained by reacting [Pd(PPh3)2Cl2] with its respective Schiff base ligand, both at a 1:1 molar ratio. The heterobimetallic [RuCl2(PPh3)2](μ-Schiff)Pd(PPh3)Cl] complex (Ru/Pd) was synthesized via a one-pot, three-component reaction of mono-Ru, [(Pd(PPh3)2Cl2] and salicylaldehyde. All complexes were fully characterized by FTIR, UV-Vis, and NMR spectroscopy, as well as elemental analysis, MALDI-TOF mass spectrometry, cyclic voltammetry, and computational studies. Ru/Pd was able to polymerize norbornene (NBE) by two different mechanisms: ROMP and vinyl polymerization. The Ru fragment was active for ROMP of NBE, reaching yields of 68 and 31% for mono-Ru and Ru/Pd, respectively, when the [NBE]/[Ru] = 3000 molar ratio and 5 μL EDA addition were employed at 50 °C. The poly(norbornene) (polyNBE) obtained presented an order of magnitude of 104 g mol−1 and Ð values between 1.48 and 1.79. For the vinyl polymerization of NBE, the Pd fragment was active using MAO as a cocatalyst, reaching a yield of 47.0% for Ru/Pd and quantitative yields for mono-Pd when [Al]/[Pd] = 2500 and [NBE]/[Pd] = 20,000 molar ratios were employed, both at 60 °C

    Ru/Pd Complex and Its Monometallic Fragments as Catalysts for Norbornene Polymerization via ROMP and Addition

    No full text
    The [Ru(PPh3)2Cl-piperidine(4-aminomethyl)] complex (mono-Ru) was synthesized from [Ru(PPh3)3Cl2] and 4-(aminomethyl)piperidine, whereas the [(PPh3)PdCl(Shiff-pip)] complex (mono-Pd) was obtained by reacting [Pd(PPh3)2Cl2] with its respective Schiff base ligand, both at a 1:1 molar ratio. The heterobimetallic [RuCl2(PPh3)2](μ-Schiff)Pd(PPh3)Cl] complex (Ru/Pd) was synthesized via a one-pot, three-component reaction of mono-Ru, [(Pd(PPh3)2Cl2] and salicylaldehyde. All complexes were fully characterized by FTIR, UV-Vis, and NMR spectroscopy, as well as elemental analysis, MALDI-TOF mass spectrometry, cyclic voltammetry, and computational studies. Ru/Pd was able to polymerize norbornene (NBE) by two different mechanisms: ROMP and vinyl polymerization. The Ru fragment was active for ROMP of NBE, reaching yields of 68 and 31% for mono-Ru and Ru/Pd, respectively, when the [NBE]/[Ru] = 3000 molar ratio and 5 μL EDA addition were employed at 50 °C. The poly(norbornene) (polyNBE) obtained presented an order of magnitude of 104 g mol−1 and Ð values between 1.48 and 1.79. For the vinyl polymerization of NBE, the Pd fragment was active using MAO as a cocatalyst, reaching a yield of 47.0% for Ru/Pd and quantitative yields for mono-Pd when [Al]/[Pd] = 2500 and [NBE]/[Pd] = 20,000 molar ratios were employed, both at 60 °C
    corecore