24 research outputs found

    A CLEC16A variant confers risk for juvenile idiopathic arthritis and anti-cyclic citrullinated peptide antibody negative rheumatoid arthritis

    Get PDF
    Objective Variants in CLEC16A have conferred susceptibility to autoimmune diseases in genome-wide association studies. The present work aimed to investigate the locus' involvements in juvenile idiopathic arthritis (JIA) and further explore the association with rheumatoid arthritis (RA), type 1 diabetes (T1D) and Addison's disease (AD) in the Norwegian population. Methods Three single nucleotide polymorphisms (SNPs) were genotyped in patients with RA (n=809), JIA (n=509), T1D (n=1211) and AD (n=414) and in healthy controls (n=2149). Results All diseases were associated with CLEC16A, but with different SNPs. The intron 22 SNP, rs6498169, was associated with RA (p=0.006) and JIA (p=0.016) and the intron 19 SNPs, rs12708716/rs12917716, with T1D (p=1×10−5) and AD (p=2×10−4). The RA association was confined to the anti-cyclic citrullinated peptide antibody (anti-CCP) negative subgroup (p=2×10−4). Conclusion This is the first report of a CLEC16A association with JIA and a split of the RA association according to anti-CCP status. Different causative variants underlie the rheumatic versus the organ specific diseases

    Interaction Analysis between HLA-DRB1 Shared Epitope Alleles and MHC Class II Transactivator CIITA Gene with Regard to Risk of Rheumatoid Arthritis

    Get PDF
    Abstract HLA-DRB1 shared epitope (SE) alleles are the strongest genetic determinants for autoantibody positive rheumatoid arthritis (RA). One of the key regulators in expression of HLA class II receptors is MHC class II transactivator (CIITA). A variant of the CIITA gene has been found to associate with inflammatory diseases. We wanted to explore whether the risk variant rs3087456 in the CIITA gene interacts with the HLA-DRB1 SE alleles regarding the risk of developing RA. We tested this hypothesis in a case-control study with 11767 individuals from four European Caucasian populations (6649 RA cases and 5118 controls). We found no significant additive interaction for risk alleles among Swedish Caucasians with RA (n = 3869, attributable proportion due to interaction (AP) = 0.2, 95%CI: 20.2-0.5) or when stratifying for anti-citrullinated protein antibodies (ACPA) presence (ACPA positive disease: n = 2945, AP = 0.3, 95%CI: 20.05-0.6, ACPA negative: n = 2268, AP = 20.2, 95%CI: 21.0-0.6). We further found no significant interaction between the main subgroups of SE alleles (DRB1*01, DRB1*04 or DRB1*10) and CIITA. Similar analysis of three independent RA cohorts from British, Dutch and Norwegian populations also indicated an absence of significant interaction between genetic variants in CIITA and SE alleles with regard to RA risk. Our data suggest that risk from the CIITA locus is independent of the major risk for RA from HLA-DRB1 SE alleles, given that no significant interaction between rs3087456 and SE alleles was observed. Since a biological link between products of these genes is evident, the genetic contribution from CIITA and class II antigens in the autoimmune process may involve additional unidentified factors

    CTLA-4 as a genetic determinant in autoimmune Addison's disease

    Get PDF
    In common with several other autoimmune diseases, autoimmune Addison’s disease (AAD) is thought to be caused by a combination of deleterious susceptibility polymorphisms in several genes, together with undefined environmental factors and stochastic events. To date, the strongest genomic association with AAD has been with alleles at the HLA locus, DR3–DQ2 and DR4. The contribution of other genetic variants has been inconsistent. We have studied the association of 16 single-nucleotide polymorphisms (SNPs) within the CD28–CTLA-4–ICOS genomic locus, in a cohort comprising 691 AAD patients of Norwegian and UK origin with matched controls. We have also performed a meta-analysis including 1002 patients from European countries. The G-allele of SNP rs231775 in CTLA-4 is associated with AAD in Norwegian patients (odds ratio (OR)=1.35 (confidence interval (CI) 1.10–1.66), P=0.004), but not in UK patients. The same allele is associated with AAD in the total European population (OR=1.37 (CI 1.13–1.66), P=0.002). A three-marker haplotype, comprising PROMOTER_1661, rs231726 and rs1896286 was found to be associated with AAD in the Norwegian cohort only (OR 2.43 (CI 1.68–3.51), P=0.00013). This study points to the CTLA-4 gene as a susceptibility locus for the development of AAD, and refines its mapping within the wider genomic locus

    Multiple Loci in the HLA Complex Are Associated with Addison's Disease.

    No full text
    Context: A strong association between autoimmune Addison's disease (AAD) and major histocompatibility complex class II-encoded HLA-DRB1-DQA1-DQB1 haplotypes is well known. Recent evidence from other autoimmune diseases has suggested that class I-encoded HLA-A and HLA-B gene variants confer HLA-DRB1-DQA1-DQB1-independent effects on disease. Objective: We aimed to explore AAD predisposing effects of HLA-A and -B and further investigate the role of MICA and HLA-DRB1-DQA1-DQB1 in a much larger material than has previously been studied. Design: HLA-A, -B, -DRB1, and -DQB1 and a microsatellite in MICA were genotyped in 414 AAD patients and 684 controls of Norwegian origin. Results: The strongest association was observed for the DRB1 locus, in which the DRB1*03:01 and DRB1*04:04 conferred increased risk of AAD, particularly in a heterozygous combination [odds ratio 22.13; 95% confidence interval (11.39-43.98); P = 6 × 10(-20)]. After conditioning on DRB1, association with AAD was still present for HLA-B and MICA, suggesting the presence of additional risk factors. Conclusions: The major histocompatibility complex harbors multiple risk loci for AAD, in which DRB1 appears to represent the main risk factor

    Identification and characterization of rare Toll-like receptor 3 variants in patients with autoimmune Addison’s disease

    No full text
    Autoimmune Addison's disease (AAD) is a classic organ-specific autoimmune disease characterized by an immune-mediated attack on the adrenal cortex. As most autoimmune diseases, AAD is believed to be caused by a combination of genetic and environmental factors, and probably interactions between the two. Persistent viral infections have been suggested to play a triggering role, by invoking inflammation and autoimmune destruction. The inability of clearing infections can be due to aberrations in innate immunity, including mutations in genes involved in the recognition of conserved microbial patterns. In a whole exome sequencing study of anonymized AAD patients, we discovered several rare variants predicted to be damaging in the gene encoding Toll-like receptor 3 (TLR3). TLR3 recognizes double stranded RNAs, and is therefore a major factor in antiviral defense. We here report the occurrence and functional characterization of five rare missense variants in TLR3 of patients with AAD. Most of these variants occurred together with a common TLR3 variant that has been associated with a wide range of immunopathologies. The biological implications of these variants on TLR3 function were evaluated in a cell-based assay, revealing a partial loss-of-function effect of three of the rare variants. In addition, rare mutations in other members of the TLR3-interferon (IFN) signaling pathway were detected in the AAD patients. Together, these findings indicate a potential role for TLR3 and downstream signaling proteins in the pathogenesis in a subset of AAD patients

    Coexistence of Congenital Adrenal Hyperplasia and Autoimmune Addison's Disease

    Get PDF
    Background: Underlying causes of adrenal insufficiency include congenital adrenal hyperplasia (CAH) and autoimmune adrenocortical destruction leading to autoimmune Addison's disease (AAD). Here, we report a patient with a homozygous stop-gain mutation in 3β-hydroxysteroid dehydrogenase type 2 (3βHSD2), in addition to impaired steroidogenesis due to AAD. Case Report: Whole exome sequencing revealed an extremely rare homozygous nonsense mutation in exon 2 of the HSD3B2 gene, leading to a premature stop codon (NM_000198.3: c.15C>A, p.Cys5Ter) in a patient with AAD and premature ovarian insufficiency. Scrutiny of old medical records revealed that the patient was initially diagnosed with CAH with hyperandrogenism and severe salt-wasting shortly after birth. However, the current steroid profile show complete adrenal insufficiency including low production of pregnenolone, dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEA-S), without signs of overtreatment with steroids. Conclusion: To the best of our knowledge, this is the first description of autoimmune adrenalitis in a patient with 3βHSD2 deficiency and suggests a possible association between AAD and inborn errors of the steroidogenesis

    Clinical, Immunological, and Genetic Features of Autoimmune Primary Adrenal Insufficiency: Observations from a Norwegian Registry.

    No full text
    Objective: Primary adrenal insufficiency [Addison's disease (AD)] is rare, and systematic studies are few, mostly conducted on small patient samples. We aimed to determine the clinical, immunological, and genetic features of a national registry-based cohort. Design: Patients with AD identified through a nationwide search of diagnosis registries were invited to participate in a survey of clinical features, health-related quality of life (HRQoL), autoantibody assays, and human leukocyte antigen (HLA) class II typing. Results: Of 664 registered patients, 64% participated in the study. The prevalence of autoimmune or idiopathic AD in Norway was 144 per million, and the incidence was 0.44 per 100,000 per year (1993-2007). Familial disease was reported by 10% and autoimmune comorbidity by 66%. Thyroid disease was most common (47%), followed by type 1 diabetes (12%), vitiligo (11%), vitamin B12 deficiency (10%), and premature ovarian insufficiency (6.6% of women). The mean daily treatment for AD was 40.5 mg cortisone acetate and 0.1 mg fludrocortisone. The mean Short Form 36 vitality scores were significantly diminished from the norm (51 vs. 60), especially among those with diabetes. Concomitant thyroid autoimmunity did not lower scores. Anti-21-hydroxylase antibodies were found in 86%. Particularly strong susceptibility for AD was found for the DR3-DQ2/ DRB1*0404-DQ8 genotype (odds ratio, 32; P = 4 x 10(-17)), which predicted early onset. Conclusions: AD is almost exclusively autoimmune, with high autoimmune comorbidity. Both anti-21-hydroxylase antibodies and HLA class II can be clinically relevant predictors of AD. HRQoL is reduced, especially among diabetes patients, whereas thyroid disease did not have an impact on HRQoL. Treatment modalities that improve HRQoL are needed
    corecore