263 research outputs found

    A feasibility study of hyoscine butylbromide (buscopan) to improve image quality of cone beam computed tomography during abdominal/pelvic Stereotactic Ablative Radiotherapy.

    Get PDF
    Objectives: Cone beam computed tomography (CBCT) is used for image guidance of stereotactic ablative radiotherapy (SABR), but it is susceptible to bowel motion artefacts. This trial evaluated the impact of hyoscine butylbromide (buscopan) on CBCT image quality and its feasibility within a radiotherapy workflow. Methods: A single-centre feasibility trial (ISRCTN24362767) was performed in patients treated with SABR for abdominal/pelvic oligorecurrence. Buscopan was administered to separate cohorts by intramuscular (IM) or intravenous (i.v.) injection on alternate fractions, providing within-patient control data. 4-point Likert scales were used to assess overall image quality (ranging from excellent to impossible to use) and bowel motion artefact (ranging from none to severe). Feasibility was determined by patient/radiographer questionnaires and toxicity assessment. Descriptive statistics are presented. Results: 16 patients were treated (8 by IM and 8 by i.v. buscopan). The percentage of images of excellent quality with/without buscopan was 47 vs 29% for IM buscopan and 65 vs 40% for i.v. buscopan. The percentage of images with no bowel motion artefact with/without buscopan was 24.6 vs 8.9% for IM buscopan and 25.8 vs 7% for i.v. buscopan. Four patients (25%) reported dry mouth. 14 patients (93%) would accept buscopan as routine. 11 radiographers (92%) reported no delay in treatments. Conclusions: A trend towards improved image quality/reduced bowel motion artefact was observed with IM/i.v. buscopan. Buscopan was well tolerated with limited impact on workflow. Advances in knowledge: This is the first trial of buscopan within a radiotherapy workflow. It demonstrated a trend to improved image quality and feasibility of use

    Orbital Elements and Stellar Parameters of the Active Binary UX Arietis

    Get PDF
    This is the final version of the article. Available from American Astronomical Society via the DOI in this record.Stellar activity observed as large surface spots, radio flares, or emission lines is often found in binary systems. UX Arietis exhibits these signs of activity, originating on the K0 subgiant primary component. Our aim is to resolve the binary, measure the orbital motion, and provide accurate stellar parameters such as masses and luminosities to aid in the interpretation of the observed phenomena. Using the CHARA six-telescope optical long-baseline array on Mount Wilson, California, we obtained amplitudes and phases of the interferometric visibility on baselines up to 330 m in length, resolving the two components of the binary. We reanalyzed archival Center for Astrophysics spectra to disentangle the binary component spectra and the spectrum of the third component, which was resolved by speckle interferometry. We also obtained new spectra with the Nordic Optical Telescope, and we present new photometric data that we use to model stellar surface spot locations. Both interferometric visibilities and spectroscopic radial velocities are modeled with a spotted primary stellar surface using the Wilson–Devinney code. We fit the orbital elements to the apparent orbit and radial velocity data to derive the distance (52.1 ± 0.8 pc) and stellar masses (MP = 1.30 0.06 M, MS = 1.14 0.06 M). The radius of the primary can be determined to be RP = 5.6 0.1 R and that of the secondary to be RS = 1.6 0.2 R. The equivalent spot coverage of the primary component was found to be 62% with an effective temperature 20% below that of the unspotted surface.We thank Robert Wilson (University of Florida) for providing a custom version of his code to compute images of spotted stellar surfaces and for his help with using it. This work is based upon observations obtained with the Georgia State University (GSU) Center for High Angular Resolution Astronomy (CHARA) array at Mount Wilson Observatory. The CHARA array is supported by the National Science Foundation under grant numbers AST-1211929 and AST-1411654. Institutional support has been provided by the GSU College of Arts and Sciences and the GSU Office of the Vice President for Research and Economic Development. The MIRC instrument at the CHARA array was funded by the University of Michigan. F.B., R.R., and J.D.M. acknowledge support from NSF-AST 1210972 and 1108963. G.T. acknowledges partial support from NSF grant AST-1509375. S.K. acknowledges support from an STFC Rutherford Fellowship (ST/J004030/1) and ERC Starting Grant (grant agreement no. 639889). This work is also based on observations made with the Nordic Optical Telescope (NOT), operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This research has made use of the SIMBAD database, operated at the CDS, Strasbourg, France. This research has made use of the Jean-Marie Mariotti Center SearchCal service13 codeveloped by FIZEAU and LAOG/IPAG and of the CDS astronomical databases SIMBAD and VIZIER.14 This research has made use of the Washington Double Star Catalog, maintained at the U.S. Naval Observatory. We thank Nicholas Elias II for discussions. We thank Dimitri Pourbaix for maintaining and providing access to the SB9 database of RV measurements of spectroscopic binaries

    The Role of Parvalbumin-positive Interneurons in Auditory Steady-State Response Deficits in Schizophrenia

    Get PDF
    © The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Despite an increasing body of evidence demonstrating subcellular alterations in parvalbumin-positive (PV+) interneurons in schizophrenia, their functional consequences remain elusive. Since PV+ interneurons are involved in the generation of fast cortical rhythms, these changes have been hypothesized to contribute to well-established alterations of beta and gamma range oscillations in patients suffering from schizophrenia. However, the precise role of these alterations and the role of different subtypes of PV+ interneurons is still unclear. Here we used a computational model of auditory steady-state response (ASSR) deficits in schizophrenia. We investigated the differential effects of decelerated synaptic dynamics, caused by subcellular alterations at two subtypes of PV+ interneurons: basket cells and chandelier cells. Our simulations suggest that subcellular alterations at basket cell synapses rather than chandelier cell synapses are the main contributor to these deficits. Particularly, basket cells might serve as target for innovative therapeutic interventions aiming at reversing the oscillatory deficits.Peer reviewe

    Patient position verification in magnetic-resonance imaging only radiotherapy of anal and rectal cancers

    Get PDF
    Background and Purpose: Magnetic resonance (MR)-only treatment pathways require either the MR-simulation or synthetic-computed tomography (sCT) as an alternative reference image for cone beam computed tomography (CBCT) patient position verification. This study assessed whether using T2 MR or sCT as CBCT reference images introduces systematic registration errors as compared to CT for anal and rectal cancers. Materials and Methods: A total of 32 patients (18 rectum,14 anus) received pre-treatment CT- and T2 MR- simulation. Routine treatment CBCTs were acquired. sCTs were generated using a validated research model. The local clinical registration protocol, using a grey-scale registration algorithm, was performed for 216 CBCTs using CT, MR and sCT as the reference image. Linear mixed effects modelling identified systematic differences between modalities. Results: Systematic translation and rotation differences to CT for MR were −0.3 to + 0.3 mm and −0.1 to 0.4° for anal cancers and −0.4 to 0.0 mm and 0.0 to 0.1° for rectal cancers, and for sCT were −0.4 to + 0.8 mm, −0.1 to 0.2° for anal cancers and −0.6 to + 0.2 mm, −0.1 to + 0.1° for rectal cancers. Conclusions: T2 MR or sCT can successfully be used as reference images for anal and rectal cancer CBCT position verification with systematic differences to CT <±1 mm and <±0.5°. Clinical enabling of alternative modalities as reference images by vendors is required to reduce challenges associated with their use
    • …
    corecore