142 research outputs found

    Recent advances in genetic systems in obligate intracellular human-pathogenic bacteria

    Get PDF
    The ability to genetically manipulate a pathogen is fundamental to discovering factors governing host–pathogen interactions at the molecular level and is critical for devising treatment and prevention strategies. While the genetic “toolbox” for many important bacterial pathogens is extensive, approaches for modifying obligate intracellular bacterial pathogens were classically limited due in part to the uniqueness of their obligatory lifestyles. Many researchers have confronted these challenges over the past two and a half decades leading to the development of multiple approaches to construct plasmid-bearing recombinant strains and chromosomal gene inactivation and deletion mutants, along with gene-silencing methods enabling the study of essential genes. This review will highlight seminal genetic achievements and recent developments (past 5 years) for Anaplasma spp., Rickettsia spp., Chlamydia spp., and Coxiella burnetii including progress being made for the still intractable Orientia tsutsugamushi. Alongside commentary of the strengths and weaknesses of the various approaches, future research directions will be discussed to include methods for C. burnetii that should have utility in the other obligate intracellular bacteria. Collectively, the future appears bright for unraveling the molecular pathogenic mechanisms of these significant pathogens

    Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L

    Get PDF
    Coxiella burnetii is a gram-negative intracellular bacterium that forms a large, lysosome-like parasitophorous vacuole (PV) essential for bacterial replication. Host membrane lipids are critical for the formation and maintenance of this intracellular niche, yet the mechanisms by which Coxiella manipulates host cell lipid metabolism, trafficking and signalling are unknown. Oxysterol-binding protein-related protein 1 long (ORP1L) is a mammalian lipid-binding protein that plays a dual role in cholesterol-dependent endocytic trafficking as well as interactions between endosomes and the endoplasmic reticulum (ER). We found that ORP1L localized to the Coxiella PV within 12 h of infection through a process requiring the Coxiella Dot/Icm Type 4B secretion system, which secretes effector proteins into the host cell cytoplasm where they manipulate trafficking and signalling pathways. The ORP1L N-terminal ankyrin repeats were necessary and sufficient for PV localization, indicating that ORP1L binds a PV membrane protein. Strikingly, ORP1L simultaneously co-localized with the PV and ER, and electron microscopy revealed membrane contact sites between the PV and ER membranes. In ORP1L-depleted cells, PVs were significantly smaller than PVs from control cells. These data suggest that ORP1L is specifically recruited by the bacteria to the Coxiella PV, where it influences PV membrane dynamics and interactions with the ER

    Identification of Anaplasma marginale Type IV Secretion System Effector Proteins

    Get PDF
    Anaplasma marginale, an obligate intracellular alphaproteobacterium in the order Rickettsiales, is a tick-borne pathogen and the leading cause of anaplasmosis in cattle worldwide. Complete genome sequencing of A. marginale revealed that it has a type IV secretion system (T4SS). The T4SS is one of seven known types of secretion systems utilized by bacteria, with the type III and IV secretion systems particularly prevalent among pathogenic Gram-negative bacteria. The T4SS is predicted to play an important role in the invasion and pathogenesis of A. marginale by translocating effector proteins across its membrane into eukaryotic target cells. However, T4SS effector proteins have not been identified and tested in the laboratory until now.Published copyLockwood, S., D. E. Voth, K. A. Brayton, P. A. Beare, W. C. Brown, R. A. Heinzen, and S. L. Broschat, Identification of Anaplasma marginale type IV secretion system effector proteins, PLoS ONE, Vol. 6, No. 11, e7724, Nov. 2011. DOI: 10.1371/journal.pone.0027724

    Orientia tsutsugamushi ankyrin repeat-containing protein family members are Type 1 secretion system substrates that traffic to the host cell endoplasmic reticulum

    Get PDF
    Scrub typhus is an understudied, potentially fatal infection that threatens one billion persons in the Asia-Pacific region. How the causative obligate intracellular bacterium, Orientia tsutsugamushi, facilitates its intracellular survival and pathogenesis is poorly understood. Many intracellular bacterial pathogens utilize the Type 1 (T1SS) or Type 4 secretion system (T4SS) to translocate ankyrin repeat-containing proteins (Anks) that traffic to distinct subcellular locations and modulate host cell processes. The O. tsutsugamushi genome encodes one of the largest known bacterial Ank repertoires plus T1SS and T4SS components. Whether these potential virulence factors are expressed during infection, how the Anks are potentially secreted, and to where they localize in the host cell are not known. We determined that O. tsutsugamushi transcriptionally expresses 20 unique ank genes as well as genes for both T1SS and T4SS during infection of mammalian host cells. Examination of the Anks’ C-termini revealed that the majority of them resemble T1SS substrates. Escherichia coli expressing a functional T1SS was able to secrete chimeric hemolysin proteins bearing the C-termini of 19 of 20 O. tsutsugamushi Anks in an HlyBD-dependent manner. Thus, O. tsutsugamushi Anks C-termini are T1SS-compatible. Conversely, Coxiella burnetii could not secrete heterologously expressed Anks in a T4SS-dependent manner. Analysis of the subcellular distribution patterns of 20 ectopically expressed Anks revealed that, while 6 remained cytosolic or trafficked to the nucleus, 14 localized to, and in some cases, altered the morphology of the endoplasmic reticulum. This study identifies O. tsutsugamushi Anks as T1SS substrates and indicates that many display a tropism for the host cell secretory pathway

    Multimodal imaging and spatial analysis of Ebola retinal lesions in 14 survivors of Ebola virus disease

    Get PDF
    Importance: Differentiation between Ebola retinal lesions and other retinal pathologies in West Africa is important, and the pathogenesis of Ebola retinal disease remains poorly understood. Objective: To describe the appearance of Ebola virus disease (EVD) retinal lesions using multimodal imaging to enable inferences on potential pathogenesis. Design, Setting, and Participants: This prospective case series study was carried out at 34 Military Hospital in Freetown, Sierra Leone. Ophthalmological images were analyzed from 14 consecutively identified survivors of EVD of Sierra Leonean origin who had identified Ebola retinal lesions. Main Outcomes and Measures: Multimodal imaging findings including ultra-widefield scanning laser ophthalmoscopy, fundus autofluorescence, swept-source optical coherence tomography (OCT), Humphrey visual field analysis, and spatial analysis. Results: The 14 study participants had a mean (SD) age of 37.1 (8.8) years; 6 (43%) were women. A total of 141 Ebola retinal lesions were observed in 22 of 27 eyes (81%) of these 14 survivors on ultra-widefield imaging. Of these, 41 lesions (29.1%) were accessible to OCT imaging. Retinal lesions were predominantly nonpigmented with a pale-gray appearance. Peripapillary lesions exhibited variable curvatures in keeping with the retinal nerve fiber layer projections. All lesions respected the horizontal raphe and spared the fovea. The OCT imaging demonstrated a V-shaped hyperreflectivity of the outer nuclear layer overlying discontinuities of the ellipsoid zone and interdigitation zone in the smaller lesions. Larger lesions caused a collapse of the retinal layers and loss of retinal thickness. Lesion shapes were variable, but sharp angulations were characteristic. Perilesional areas of dark without pressure (thinned ellipsoid zone hyporeflectivity) accompanied 125 of the 141 lesions (88.7%) to varying extents. Conclusions and Relevance: We demonstrate OCT evidence of localized pathological changes at the level of the photoreceptors in small lesions among survivors of EVD with retinal lesions. The relevance of associated areas of dark without pressure remains undetermined

    How Does Blood-Retinal Barrier Breakdown Relate to Death and Disability in Pediatric Cerebral Malaria?

    Get PDF
    Background In cerebral malaria, the retina can be used to understand disease pathogenesis. The mechanisms linking sequestration, brain swelling and death remain poorly understood. We hypothesized that retinal vascular leakage would be associated with brain swelling. Methods We used retinal angiography to study blood-retinal barrier integrity. We analyzed retinal leakage, histopathology, brain MRI, and associations with death and neurological disability in prospective cohorts of Malawian children with cerebral malaria. Results Three types of retinal leakage were seen: Large focal leak (LFL), punctate leak (PL) and vessel leak. LFL and PL were associated with death (OR 13.20, 95%CI 5.21-33.78 and 8.58, 2.56-29.08 respectively), and brain swelling (p<0.05). Vessel leak and macular non-perfusion were associated with neurological disability (3.71, 1.26-11.02 and 9.06, 1.79-45.90). LFL was observed as an evolving retinal hemorrhage. A core of fibrinogen and monocytes was found in 39 (93%) white-centered hemorrhages. Conclusions Blood-retina barrier breakdown occurs in three patterns in cerebral malaria. Associations between LFL, brain swelling, and death suggest that the rapid accumulation of cerebral hemorrhages, with accompanying fluid egress, may cause fatal brain swelling. Vessel leak from barrier dysfunction, and non-perfusion were not associated with severe brain swelling, but with neurological deficits, suggesting hypoxic injury in survivors

    Circulating biomarkers during treatment in patients with advanced biliary tract cancer receiving cediranib in the UK ABC-03 trial

    Get PDF
    BACKGROUND: Advanced biliary tract cancer (ABC) has a poor prognosis. Cediranib, in addition to cisplatin/gemcitabine [CisGem], improved the response rate, but did not improve the progression-free survival (PFS) in the ABC-03 study. Minimally invasive biomarkers predictive of cediranib benefit may improve patient outcomes. METHODS: Changes in 15 circulating plasma angiogenesis or inflammatory-related proteins and cytokeratin-18 (CK18), measured at baseline and during therapy until disease progression, were correlated with overall survival (OS) using time-varying covariate Cox models (TVC). RESULTS: Samples were available from n=117/124 (94%) patients. Circulating Ang1&2, FGFb, PDGFbb, VEGFC, VEGFR1 and CK18 decreased as a result of the therapy, independent of treatment with cediranib. Circulating VEGFR2 and Tie2 were preferentially reduced by cediranib. Patients with increasing levels of VEGFA at any time had a worse PFS and OS; this detrimental effect was attenuated in patients receiving cediranib. TVC analysis revealed CK18 and VEGFR2 increases correlated with poorer OS in all patients (P< 0.001 and P=0.02, respectively). CONCLUSIONS: Rising circulating VEGFA levels in patients with ABC, treated with CisGem, are associated with worse PFS and OS, not seen in patients receiving cediranib. Rising levels of markers of tumour burden (CK18) and potential resistance (VEGFR2) are associated with worse outcomes and warrant validation

    Elevated Plasma Von Willebrand Factor and Propeptide Levels in Malawian Children with Malaria

    Get PDF
    In children with malaria plasma VWF and propeptide levels are markedly elevated in both cerebral and mild paediatric malaria, with levels matching disease severity, and these normalize upon recovery. High levels of both markers also occur in retinopathy-negative 'cerebral malaria' cases, many of whom are thought to be suffering from diseases other than malaria, indicating that further studies of these markers will be required to determine their sensitivity and specificity
    • 

    corecore