11,528 research outputs found
Gemini/GMOS Transmission Spectral Survey: Complete Optical Transmission Spectrum of the hot Jupiter WASP-4b
We present the complete optical transmission spectrum of the hot Jupiter
WASP-4b from 440-940 nm at R ~ 400-1500 obtained with the Gemini Multi-Object
Spectrometers (GMOS); this is the first result from a comparative
exoplanetology survey program of close-in gas giants conducted with GMOS.
WASP-4b has an equilibrium temperature of 1700 K and is favorable to study in
transmission due to a large scale height (370 km). We derive the transmission
spectrum of WASP-4b using 4 transits observed with the MOS technique. We
demonstrate repeatable results across multiple epochs with GMOS, and derive a
combined transmission spectrum at a precision about twice above photon noise,
which is roughly equal to to one atmospheric scale height. The transmission
spectrum is well fitted with a uniform opacity as a function of wavelength. The
uniform opacity and absence of a Rayleigh slope from molecular hydrogen suggest
that the atmosphere is dominated by clouds with condensate grain size of ~1 um.
This result is consistent with previous observations of hot Jupiters since
clouds have been seen in planets with similar equilibrium temperatures to
WASP-4b. We describe a custom pipeline that we have written to reduce GMOS
time-series data of exoplanet transits, and present a thorough analysis of the
dominant noise sources in GMOS, which primarily consist of wavelength- and
time- dependent displacements of the spectra on the detector, mainly due to a
lack of atmospheric dispersion correction.Comment: 23 pages, 12 figures, accepted for publication in AJ, 2017 July
Comparing key compositional indicators in Jupiter with those in extra-solar giant planets
Spectroscopic transiting observations of the atmospheres of hot Jupiters
around other stars, first with Hubble Space Telescope and then Spitzer, opened
the door to compositional studies of exoplanets. The James Webb Space Telescope
will provide such a profound improvement in signal-to-noise ratio that it will
enable detailed analysis of molecular abundances, including but not limited to
determining abundances of all the major carbon- and oxygen-bearing species in
hot Jupiter atmospheres. This will allow determination of the carbon-to-oxygen
ratio, an essential number for planet formation models and a motivating goal of
the Juno mission currently around JupiterComment: Submitted to the Astro2020 Decadal Survey as a white paper; thematic
areas "Planetary Systems" and "Star and Planet Formation
New Analysis Indicates No Thermal Inversion in the Atmosphere of HD 209458b
An important focus of exoplanet research is the determination of the
atmospheric temperature structure of strongly irradiated gas giant planets, or
hot Jupiters. HD 209458b is the prototypical exoplanet for atmospheric thermal
inversions, but this assertion does not take into account recently obtained
data or newer data reduction techniques. We re-examine this claim by
investigating all publicly available Spitzer Space Telescope secondary-eclipse
photometric data of HD 209458b and performing a self-consistent analysis. We
employ data reduction techniques that minimize stellar centroid variations,
apply sophisticated models to known Spitzer systematics, and account for
time-correlated noise in the data. We derive new secondary-eclipse depths of
0.119 +/- 0.007%, 0.123 +/- 0.006%, 0.134 +/- 0.035%, and 0.215 +/- 0.008% in
the 3.6, 4.5, 5.8, and 8.0 micron bandpasses, respectively. We feed these
results into a Bayesian atmospheric retrieval analysis and determine that it is
unnecessary to invoke a thermal inversion to explain our secondary-eclipse
depths. The data are well-fitted by a temperature model that decreases
monotonically between pressure levels of 1 and 0.01 bars. We conclude that
there is no evidence for a thermal inversion in the atmosphere of HD 209458b.Comment: 8 pages, 5 figures; accepted for publication in Ap
A Search for Water in the Atmosphere of HAT-P-26b Using LDSS-3C
The characterization of a physically-diverse set of transiting exoplanets is
an important and necessary step towards establishing the physical properties
linked to the production of obscuring clouds or hazes. It is those planets with
identifiable spectroscopic features that can most effectively enhance our
understanding of atmospheric chemistry and metallicity. The newly-commissioned
LDSS-3C instrument on Magellan provides enhanced sensitivity and suppressed
fringing in the red optical, thus advancing the search for the spectroscopic
signature of water in exoplanetary atmospheres from the ground. Using data
acquired by LDSS-3C and the Spitzer Space Telescope, we search for evidence of
water vapor in the transmission spectrum of the Neptune-mass planet HAT-P-26b.
Our measured spectrum is best explained by the presence of water vapor, a lack
of potassium, and either a high-metallicity, cloud-free atmosphere or a
solar-metallicity atmosphere with a cloud deck at ~10 mbar. The emergence of
multi-scale-height spectral features in our data suggests that future
observations at higher precision could break this degeneracy and reveal the
planet's atmospheric chemical abundances. We also update HAT-P-26b's transit
ephemeris, t_0 = 2455304.65218(25) BJD_TDB, and orbital period, p =
4.2345023(7) days.Comment: 9 pages, 8 figures, Accepted for publication in Ap
Temporal evolution of long-period seismicity at Etna Volcano, Italy, and its relationships with the 2004–2005 eruption
Between December 2004 and August 2005, more than 50,000 long-period events (LP) accompanied by very-long period pulses (VLP) were recorded at Mt. Etna, encompassing the effusive eruption which started in September 2004. The observed activity can be explained by the injection of a gas slug formed within the magmatic column into an overlying cavity filled by either magmatic or hydrothermal fluids, thus triggering cavity resonance. Although a large number of LP events exhibit similar waveforms before the eruption, they change significantly during and after the eruption. We study the temporal evolution of the LP-VLP activity in terms of the source movement, change of the waveforms, temporal evolution of the dominant resonance frequencies and the source Q factor and changes in the polarization of the signal. The LP source locations before and after the eruption, respectively, do not move significantly, while a slight movement of the VLP source is found. The intensity of the LP events increases after the eruption as well as their dominant frequency and Q factor, while the polarization of the signals changes from predominantly transversal to pure radial motion. Although in previous studies a link between the observed LP activity and the eruption was not found, these observations suggest that such a link was established at the latter end of the eruptive sequence, most likely as a consequence of a reestablishment of the pressure balance in the plumbing system, after it was undermined due to the discharge of large amounts of resident magma during the eruption. Based on the polarization properties of the signal and geological setting of the area, a fluid-filled crack is proposed as the most likely source geometry. The spectral analysis based on the autoregressive-models (SOMPI) is applied to the signals in order to analyse the resonance frequencies and the source Q-factors. The results suggest water and basalt at low gas volume fraction as the most likely fluids involved in the source process. Using theoretical relations for the “slow waves” radiated from the fluid-filled crack, we also estimate the crack size for both fluids, respectively
Autonomous clustering using rough set theory
This paper proposes a clustering technique that minimises the need for subjective
human intervention and is based on elements of rough set theory. The proposed algorithm is
unified in its approach to clustering and makes use of both local and global data properties to
obtain clustering solutions. It handles single-type and mixed attribute data sets with ease and
results from three data sets of single and mixed attribute types are used to illustrate the
technique and establish its efficiency
Radiation hardness of CMS pixel barrel modules
Pixel detectors are used in the innermost part of the multi purpose
experiments at LHC and are therefore exposed to the highest fluences of
ionising radiation, which in this part of the detectors consists mainly of
charged pions. The radiation hardness of all detector components has thoroughly
been tested up to the fluences expected at the LHC. In case of an LHC upgrade,
the fluence will be much higher and it is not yet clear how long the present
pixel modules will stay operative in such a harsh environment. The aim of this
study was to establish such a limit as a benchmark for other possible detector
concepts considered for the upgrade.
As the sensors and the readout chip are the parts most sensitive to radiation
damage, samples consisting of a small pixel sensor bump-bonded to a CMS-readout
chip (PSI46V2.1) have been irradiated with positive 200 MeV pions at PSI up to
6E14 Neq and with 21 GeV protons at CERN up to 5E15 Neq.
After irradiation the response of the system to beta particles from a Sr-90
source was measured to characterise the charge collection efficiency of the
sensor. Radiation induced changes in the readout chip were also measured. The
results show that the present pixel modules can be expected to be still
operational after a fluence of 2.8E15 Neq. Samples irradiated up to 5E15 Neq
still see the beta particles. However, further tests are needed to confirm
whether a stable operation with high particle detection efficiency is possible
after such a high fluence.Comment: Contribution to the 11th European Symposium on Semiconductor
Detectors June 7-11, 2009 Wildbad Kreuth, German
Delayed Recombination and Standard Rulers
Measurements of Baryonic Acoustic Oscillations in galaxy surveys have been
recognized as a powerful tool for constraining dark energy. However, this
method relies on the knowledge of the size of the acoustic horizon at
recombination derived from Cosmic Microwave Background Anisotropy measurements.
This estimate is typically derived assuming a standard recombination scheme;
additional radiation sources can delay recombination altering the cosmic
ionization history and the cosmological inferences drawn from CMB and BAO data.
In this paper we quantify the effect of delayed recombination on the
determination of dark energy parameters from future BAO surveys such as BOSS
and WFMOS. We find the impact to be small but still not negligible. In
particular, if recombination is non-standard (to a level still allowed by CMB
data), but this is ignored, future surveys may incorrectly suggest the presence
of a redshift dependent dark energy component. On the other hand, in the case
of delayed recombination, adding to the analysis one extra parameter describing
deviations from standard recombination, does not significantly degrade the
error-bars on dark energy parameters and yields unbiased estimates.Comment: 8 pages, 5 figure
Vector magnetic hysteresis of hard superconductors
Critical state problems which incorporate more than one component for the
magnetization vector of hard superconductors are investigated. The theory is
based on the minimization of a cost functional
which weighs the changes of the magnetic field vector within the sample. We
show that Bean's simplest prescription of choosing the correct sign for the
critical current density in one dimensional problems is just a particular
case of finding the components of the vector . is
determined by minimizing under the constraint , with a bounded set. Upon the selection of
different sets we discuss existing crossed field measurements and
predict new observable features. It is shown that a complex behavior in the
magnetization curves may be controlled by a single external parameter, i.e.:
the maximum value of the applied magnetic field .Comment: 10 pages, 9 figures, accepted in Phys. Rev.
Ground-based optical transmission spectrum of the hot Jupiter HAT-P-1b
Time-series spectrophotometric studies of exoplanets during transit using
ground-based facilities are a promising approach to characterize their
atmospheric compositions. We aim to investigate the transit spectrum of the hot
Jupiter HAT-P-1b. We compare our results to those obtained at similar
wavelengths by previous space-based observations. We observed two transits of
HAT-P-1b with the Gemini Multi-Object Spectrograph (GMOS) instrument on the
Gemini North telescope using two instrument modes covering the 320 - 800 nm and
520 - 950 nm wavelength ranges. We used time-series spectrophotometry to
construct transit light curves in individual wavelength bins and measure the
transit depths in each bin. We accounted for systematic effects. We addressed
potential photometric variability due to magnetic spots in the planet's host
star with long-term photometric monitoring. We find that the resulting transit
spectrum is consistent with previous Hubble Space Telescope (HST) observations.
We compare our observations to transit spectroscopy models that marginally
favor a clear atmosphere. However, the observations are also consistent with a
flat spectrum, indicating high-altitude clouds. We do not detect the Na
resonance absorption line (589 nm), and our observations do not have sufficient
precision to study the resonance line of K at 770 nm. We show that even a
single Gemini/GMOS transit can provide constraining power on the properties of
the atmosphere of HAT-P-1b to a level comparable to that of HST transit studies
in the optical when the observing conditions and target and reference star
combination are suitable. Our 520 - 950 nm observations reach a precision
comparable to that of HST transit spectra in a similar wavelength range of the
same hot Jupiter, HAT-P-1b. However, our GMOS transit between 320 - 800 nm
suffers from strong systematic effects and yields larger uncertainties.Comment: A&A, accepted, 16 pages, 8 figures, 5 table
- …