69 research outputs found
Examining the relationship between home literacy environment and neural correlates of phonological processing in beginning readers with and without a familial risk for dyslexia: an fMRI study
Developmental dyslexia is a language-based learning disability characterized by persistent difficulty in learning to read. While an understanding of genetic contributions is emerging, the ways the environment affects brain functioning in children with developmental dyslexia are poorly understood. A relationship between the home literacy environment (HLE) and neural correlates of reading has been identified in typically developing children, yet it remains unclear whether similar effects are observable in children with a genetic predisposition for dyslexia. Understanding environmental contributions is important given that we do not understand why some genetically at-risk children do not develop dyslexia. Here we investigate for the first time the relationship between HLE and the neural correlates of phonological processing in beginning readers with (FHD+, n=29) and without (FHDâ, n=21) a family history of developmental dyslexia. We controlled for socio-economic status to isolate the neurobiological mechanism by which HLE affects reading development. Group differences revealed stronger correlation of HLE with brain activation in the left inferior/middle frontal and right fusiform gyri in FHDâ compared to FHD+ children, suggesting greater impact of HLE on manipulation of phonological codes and recruitment of orthographic representations in typically developing children. In contrast, activation in the right precentral gyrus showed a significantly stronger correlation with HLE in FHD+ compared to FHDâ children, suggesting emerging compensatory networks in genetically at-risk children. Overall, our results suggest that genetic predisposition for dyslexia alters contributions of HLE to early reading skills before formal reading instruction, which has important implications for educational practice and intervention models
An Anthropocene Without ArchaeologyâShould We Care?
For more than a decade, a movement has been gathering steam among geoscientists to designate an Anthropocene Epoch and formally recognize that we have entered a new geological age in which Earthâs systems are dominated by humans. Chemists, climatologists, and other scientists have entered the discussion, and there is a growing consensus that we are living in the Anthropocene. Nobel Prize-winning atmospheric chemist Paul Crutzen (2002a, 2002b; Crutzen and Stoermer 2000) coined the term, but the idea that humans are a driver of our planetâs climate and ecosystems has much deeper roots. Italian geologist Antonio Stoppani wrote of the âanthropozoic eraâ in 1873 (Crutzen 2002a), and many others have proposed similar ideas, including journalist Andrew Revkinâs (1992) reference to the âAnthroceneâ and Vitousek and colleagues (1997) article about human domination of earthâs ecosystems. It was not until Crutzen (2002a, 2002b) proposed that the Anthropocene began with increased atmospheric carbon levels caused by the Industrial Revolution in the late eighteenth century (including the invention of the steam engine in A.D. 1784), however, that the concept began to gain serious traction among scientists and inspire debate
ERP Mismatch Negativity Amplitude and Asymmetry Reflect Phonological and Rapid Automatized Naming Skills in English-Speaking Kindergartners
The mismatch negativity (MMN), an electrophysiological response to an oddball auditory stimulus, is related to reading ability in many studies. There are conflicting findings regarding exactly how the MMN relates to risk or actual diagnosis of dyslexia/reading impairment, perhaps due to the heterogeneity of abilities in children with reading impairment. In this study, 166 English-speaking kindergarten children oversampled for dyslexia risk completed behavioral assessments and a speech-syllable MMN paradigm. We examined how early and late MMN mean amplitude and laterality were related to two established predictors of reading ability: phonological awareness (PA) and rapid automatized naming (RAN). In bootstrapped group analyses, late MMN amplitude was significantly greater in children with typical PA ability than low PA ability. In contrast, laterality of the early and late MMN was significantly different in children with low versus typical RAN ability. Continuous analyses controlling for child age, non-verbal IQ, and letter and word identification abilities showed the same associations between late MMN amplitude with PA and late MMN laterality with RAN. These findings suggest that amplitude of the MMN may relate to phonological representations and ability to manipulate them, whereas MMN laterality may reflect differences in brain processes that support automaticity needed for reading
Expression of phosphorylated raf kinase inhibitor protein (pRKIP) is a predictor of lung cancer survival
<p>Abstract</p> <p>Background</p> <p>Raf-1 kinase inhibitor protein (RKIP) has been reported to negatively regulate signal kinases of major survival pathways. RKIP activity is modulated in part by phosphorylation on Serine 153 by protein kinase C, which leads to dissociation of RKIP from Raf-1. RKIP expression is low in many human cancers and represents an indicator of poor prognosis and/or induction of metastasis. The prognostic power has typically been based on total RKIP expression and has not considered the significance of phospho-RKIP.</p> <p>Methods</p> <p>The present study examined the expression levels of both RKIP and phospho-RKIP in human lung cancer tissue microarray proteomics technology.</p> <p>Results</p> <p>Total RKIP and phospho-RKIP expression levels were similar in normal and cancerous tissues. phospho-RKIP levels slightly decreased in metastatic lesions. However, the expression levels of phospho-RKIP, in contrast to total RKIP, displayed significant predictive power for outcome with normal expression of phospho-RKIP predicting a more favorable survival compared to lower levels (P = 0.0118); this was even more pronounced in more senior individuals and in those with early stage lung cancer.</p> <p>Conclusions</p> <p>This study examines for the first time, the expression profile of RKIP and phospho-RKIP in lung cancer. Significantly, we found that phospho-RKIP was a predictive indicator of survival.</p
Recommended from our members
2024 UK and Ireland modified Delphi consensus on myopia management in children and young people
Introduction: This work aimed to establish the largest UK and Ireland consensus on myopia management in children and young people (CYP). Methods: A modified Delphi consensus was conducted with a panel of 34 optometrists and ophthalmologists with expertise in myopia management. Results: Two rounds of voting took place and 131 statements were agreed, including that interventions should be discussed with parents/carers of all CYP who develop myopia before the age of 13 years, a recommendation for interventions to be publicly funded for those at risk of fast progression and high myopia, that intervention selection should take into account the CYP's hobbies and lifestyle and that additional training for eye care professionals should be available from non-commercial sources. Topics for which published evidence is limited or lacking were areas of weaker or no consensus. Modern myopia management contact and spectacles are suitable first-line treatments. The role and provision of low-concentration atropine needs to be reviewed once marketing authorisations and funding decisions are in place. There is some evidence that a combination of low-concentration atropine with an optical intervention can have an additive effect; further research is needed. Once an intervention is started, best practice is to monitor non-cycloplegic axial length 6 monthly. Conclusion: Research is needed to identify those at risk of progression, the long-term effectiveness of individual and combined interventions, and when to discontinue treatment when myopia has stabilised. As further evidence continues to emerge, this consensus work will be repeated to ensure it remains relevant.</p
Connectivity precedes function in the development of the visual word form area
What determines the cortical location at which a given functionally specific region will arise in development? We tested the hypothesis that functionally specific regions develop in their characteristic locations because of pre-existing differences in the extrinsic connectivity of that region to the rest of the brain. We exploited the visual word form area (VWFA) as a test case, scanning children with diffusion and functional imaging at age 5, before they learned to read, and at age 8, after they learned to read. We found the VWFA developed functionally in this interval and that its location in a particular child at age 8 could be predicted from that child's connectivity fingerprints (but not functional responses) at age 5. These results suggest that early connectivity instructs the functional development of the VWFA, possibly reflecting a general mechanism of cortical development.National Institutes of Health (U.S.) (Grant F32HD079169)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant F32HD079169)National Institutes of Health (U.S.) (Grant R01HD067312)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant R01HD067312
Downregulation of RKIP Is Associated with Poor Outcome and Malignant Progression in Gliomas
Malignant gliomas are highly infiltrative and invasive tumors, which precludes the few treatment options available. Therefore, there is an urgent need to elucidate the molecular mechanisms underlying gliomas aggressive phenotype and poor prognosis. The Raf Kinase Inhibitory protein (RKIP), besides regulating important intracellular signaling cascades, was described to be associated with progression, metastasis and prognosis in several human neoplasms. Its role in the prognosis and tumourigenesis of gliomas remains unclear
Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD
Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1,131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (pvalue=4.82e-08, OR=2.12), and two known loci: UNC13A, led by rs1297319 (pvalue=1.27e-08, OR=1.50) and HLA-DQA2 led by rs17219281 (pvalue=3.22e-08, OR=1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (nâ„3) as compared to controls (n=0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g. DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis
Prognostic indicators and outcomes of hospitalised COVID-19 patients with neurological disease: An individual patient data meta-analysis
BACKGROUND: Neurological COVID-19 disease has been reported widely, but published studies often lack information on neurological outcomes and prognostic risk factors. We aimed to describe the spectrum of neurological disease in hospitalised COVID-19 patients; characterise clinical outcomes; and investigate factors associated with a poor outcome. METHODS: We conducted an individual patient data (IPD) meta-analysis of hospitalised patients with neurological COVID-19 disease, using standard case definitions. We invited authors of studies from the first pandemic wave, plus clinicians in the Global COVID-Neuro Network with unpublished data, to contribute. We analysed features associated with poor outcome (moderate to severe disability or death, 3 to 6 on the modified Rankin Scale) using multivariable models. RESULTS: We included 83 studies (31 unpublished) providing IPD for 1979 patients with COVID-19 and acute new-onset neurological disease. Encephalopathy (978 [49%] patients) and cerebrovascular events (506 [26%]) were the most common diagnoses. Respiratory and systemic symptoms preceded neurological features in 93% of patients; one third developed neurological disease after hospital admission. A poor outcome was more common in patients with cerebrovascular events (76% [95% CI 67-82]), than encephalopathy (54% [42-65]). Intensive care use was high (38% [35-41]) overall, and also greater in the cerebrovascular patients. In the cerebrovascular, but not encephalopathic patients, risk factors for poor outcome included breathlessness on admission and elevated D-dimer. Overall, 30-day mortality was 30% [27-32]. The hazard of death was comparatively lower for patients in the WHO European region. INTERPRETATION: Neurological COVID-19 disease poses a considerable burden in terms of disease outcomes and use of hospital resources from prolonged intensive care and inpatient admission; preliminary data suggest these may differ according to WHO regions and country income levels. The different risk factors for encephalopathy and stroke suggest different disease mechanisms which may be amenable to intervention, especially in those who develop neurological symptoms after hospital admission
Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease
We identified rare coding variants associated with Alzheimerâs disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1Ă10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5Ă10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38Ă10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56Ă10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55Ă10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development
- âŠ