87 research outputs found

    Detection of scattered light from the hot dust in HD 172555

    Full text link
    Debris disks or belts are important signposts for the presence of colliding planetesimals and, therefore, for ongoing planet formation and evolution processes in young planetary systems. Imaging of debris material at small separations from the star is very challenging but provides valuable insights into the spatial distribution of so-called hot dust produced by solid bodies located in or near the habitable zone. We report the first detection of scattered light from the hot dust around the nearby (d = 28.33 pc) A star HD 172555. We want to constrain the geometric structure of the detected debris disk using polarimetric differential Imaging (PDI) with a spatial resolution of 25 mas and an inner working angle of about 0.1′′''. We measured the polarized light of HD 172555, with SPHERE-ZIMPOL, in the very broad band (VBB; λ=735\lambda=735 nm) filter for the projected separations between 0.08′′'' (2.3 au) and 0.77′′'' (22 au). We constrained the disk parameters by fitting models for scattering of an optically thin dust disk taking the limited spatial resolution and coronagraphic attenuation of our data into account. The geometric structure of the disk in polarized light shows roughly the same orientation and outer extent as obtained from thermal emission at 18 μ\mum. Our image indicates the presence of a strongly inclined (i∼103.5∘i\sim 103.5^\circ), roughly axisymmetric dust belt with an outer radius in the range between 0.3′′'' (8.5 au) and 0.4′′'' (11.3 au). We derive a lower limit for the polarized flux contrast ratio for the disk of (Fpol)disk/F∗>(6.2±0.6)⋅10−5(F_{\rm pol})_{\rm disk}/F_{\rm \ast}> (6.2 \pm 0.6)\cdot 10^{-5} in the VBB filter. This ratio is small, only 9 %, when compared to the fractional infrared flux excess (≈7.2⋅10−4\approx 7.2\cdot 10^{-4}). The model simulations show that more polarized light could be produced by the dust located inside 2 au, which cannot be detected with the instrument configuration used.Comment: 16 pages, 10 figure

    Prospects of detecting the polarimetric signature of the Earth-mass planet α Centauri B b with SPHERE/ZIMPOL

    Get PDF
    Context. Over the past five years, radial-velocity and transit techniques have revealed a new population of Earth-like planets with masses of a few Earth masses. Their very close orbit around their host star requires an exquisite inner working angle to be detected in direct imaging and sets a challenge for direct imagers that work in the visible range, such as SPHERE/ZIMPOL. Aims. Among all known exoplanets with less than 25 Earth masses we first predict the best candidate for direct imaging. Our primary objective is then to provide the best instrument setup and observing strategy for detecting such a peculiar object with ZIMPOL. As a second step, we aim at predicting its detectivity. Methods. Using exoplanet properties constrained by radial velocity measurements, polarimetric models and the diffraction propagation code CAOS, we estimate the detection sensitivity of ZIMPOL for such a planet in different observing modes of the instrument. We show how observing strategies can be optimized to yield the best detection performance on a specific target. Results. In our current knowledge of exoplanetary systems, α Centauri B b is the most promising target with less than 25 Earth masses for ZIMPOL. With a gaseous Rayleigh-scattering atmosphere and favorable inclinations, the planet could be detected in about four hours of observing time, using the four-quadrant phase-mask coronograph in the I band. However, if α Centauri B b should display unfavorable polarimetric and reflective properties similar to that of our Moon, it is around 50 times fainter than the best sensitivity of ZIMPOL. Conclusions. α Centauri B is a primary target for SPHERE. Dedicated deep observations specifically targeting the radial velocity-detected planet can lead to a detection if the polarimetric properties of the planet are favorable

    Exploring dust around HD142527 down to 0.025" / 4au using SPHERE/ZIMPOL

    Get PDF
    We have observed the protoplanetary disk of the well-known young Herbig star HD 142527 using ZIMPOL Polarimetric Differential Imaging with the VBB (Very Broad Band, ~600-900nm) filter. We obtained two datasets in May 2015 and March 2016. Our data allow us to explore dust scattering around the star down to a radius of ~0.025" (~4au). The well-known outer disk is clearly detected, at higher resolution than before, and shows previously unknown sub-structures, including spirals going inwards into the cavity. Close to the star, dust scattering is detected at high signal-to-noise ratio, but it is unclear whether the signal represents the inner disk, which has been linked to the two prominent local minima in the scattering of the outer disk, interpreted as shadows. An interpretation of an inclined inner disk combined with a dust halo is compatible with both our and previous observations, but other arrangements of the dust cannot be ruled out. Dust scattering is also present within the large gap between ~30 and ~140au. The comparison of the two datasets suggests rapid evolution of the inner regions of the disk, potentially driven by the interaction with the close-in M-dwarf companion, around which no polarimetric signal is detected.Comment: 11 pages, 7 figures, accepted for publication in A

    Shadows cast on the transition disk of HD 135344B. Multiwavelength VLT/SPHERE polarimetric differential imaging

    Get PDF
    The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission which are possibly related to planet formation processes. We study the morphology and surface brightness of the disk in scattered light to gain insight into the innermost disk regions, the formation of protoplanets, planet-disk interactions traced in the surface and midplane layers, and the dust grain properties of the disk surface. We have carried out high-contrast polarimetric differential imaging (PDI) observations with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in R- and I-band and with IRDIS in Y- and J-band. The scattered light images reveal with unprecedented angular resolution and sensitivity the spiral arms as well as the 25 au cavity of the disk. Multiple shadow features are discovered on the outer disk with one shadow only being present during the second observation epoch. A positive surface brightness gradient is observed in the stellar irradiation corrected images in southwest direction possibly due to an azimuthally asymmetric perturbation of the temperature and/or surface density by the passing spiral arms. The disk integrated polarized flux, normalized to the stellar flux, shows a positive trend towards longer wavelengths which we attribute to large aggregate dust grains in the disk surface. Part of the the non-azimuthal polarization signal in the Uphi image of the J-band observation could be the result of multiple scattering in the disk. The detected shadow features and their possible variability have the potential to provide insight into the structure of and processes occurring in the innermost disk regions.Comment: Accepted for publication in A&A, 20 pages, 15 figure

    First light of the VLT planet finder SPHERE. II. The physical properties and the architecture of the young systems PZ Tel and HD 1160 revisited

    Get PDF
    [Abridged] Context. The young systems PZ Tel and HD 1160, hosting known low-mass companions, were observed during the commissioning of the new planet finder SPHERE with several imaging and spectroscopic modes. Aims. We aim to refine the physical properties and architecture of both systems. Methods. We use SPHERE commissioning data and REM observations, as well as literature and unpublished data from VLT/SINFONI, VLT/NaCo, Gemini/NICI, and Keck/NIRC2. Results. We derive new photometry and confirm the nearly daily photometric variability of PZ Tel A. Using literature data spanning 38 yr, we show that the star also exhibits a long-term variability trend. The 0.63-3.8 mic SED of PZ Tel B allows us to revise its properties: spectral type M7+/-1, Teff=2700+/-100 K, log(g)<4.5 dex, log(L/L_Sun)=-2.51+/-0.10 dex, and mass 38-72 MJ. The 1-3.8 mic SED of HD 1160 B suggests a massive brown dwarf or a low-mass star with spectral type M5.5-7.0, Teff=3000+/-100 K, [M/H]=-0.5-0.0 dex, log(L/L_Sun)=-2.81+/-0.10 dex, and mass 39-168 MJ. We confirm the deceleration and high eccentricity (e>0.66) of PZ Tel B. For e<0.9, the inclination, longitude of the ascending node, and time of periastron passage are well constrained. The system is seen close to an edge-on geometry. We reject other brown dwarf candidates outside 0.25" for both systems, and massive giant planets (>4 MJ) outside 0.5" for the PZ Tel system. We also show that K1-K2 color can be used with YJH low-resolution spectra to identify young L-type companions, provided high photometric accuracy (<0.05 mag) is achieved. Conclusions. SPHERE opens new horizons in the study of young brown dwarfs and giant exoplanets thanks to high-contrast imaging capabilities at optical and near-infrared wavelengths, as well as high signal-to-noise spectroscopy in the near-infrared from low (R~30-50) to medium resolutions (R~350).Comment: 25 pages, 23 figures, accepted for publication in A&A on Oct. 13th, 2015; version including language editing. Typo on co-author name on astroph page corrected, manuscript unchange

    Post conjunction detection of β\beta Pictoris b with VLT/SPHERE

    Get PDF
    With an orbital distance comparable to that of Saturn in the solar system, \bpic b is the closest (semi-major axis ≃\simeq\,9\,au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to \bpic have been obtained in the southwestern part of the orbit, which severely limits the determination of the planet's orbital parameters. We aimed at further constraining \bpic b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit. We used SPHERE at the VLT to precisely monitor the orbital motion of beta \bpic b since first light of the instrument in 2014. We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6\,au) and prevented further detection. We redetected \bpic b on the northeast side of the disk at a separation of 139\,mas and a PA of 30∘^{\circ} in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of a=9.0±0.5a = 9.0 \pm 0.5 au (1 σ\sigma ), it definitely excludes previously reported possible long orbital periods, and excludes \bpic b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away.Comment: accepted by A&

    SPHERE: the exoplanet imager for the Very Large Telescope

    Get PDF
    Observations of circumstellar environments to look for the direct signal of exoplanets and the scattered light from disks has significant instrumental implications. In the past 15 years, major developments in adaptive optics, coronagraphy, optical manufacturing, wavefront sensing and data processing, together with a consistent global system analysis have enabled a new generation of high-contrast imagers and spectrographs on large ground-based telescopes with much better performance. One of the most productive is the Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE) designed and built for the ESO Very Large Telescope (VLT) in Chile. SPHERE includes an extreme adaptive optics system, a highly stable common path interface, several types of coronagraphs and three science instruments. Two of them, the Integral Field Spectrograph (IFS) and the Infra-Red Dual-band Imager and Spectrograph (IRDIS), are designed to efficiently cover the near-infrared (NIR) range in a single observation for efficient young planet search. The third one, ZIMPOL, is designed for visible (VIR) polarimetric observation to look for the reflected light of exoplanets and the light scattered by debris disks. This suite of three science instruments enables to study circumstellar environments at unprecedented angular resolution both in the visible and the near-infrared. In this work, we present the complete instrument and its on-sky performance after 4 years of operations at the VLT.Comment: Final version accepted for publication in A&
    • …
    corecore