2,256 research outputs found

    Análisis de los parámetros del flujo de neutrinos de núcleos activos de galaxias en el contexto del experimento IceCube

    Get PDF
    La presente tesis tiene como objetivo principal cuantificar las diferencias entre los diversos modelos de producción de neutrinos en NAGs, debidas a los parámetros que describen este flujo y determinar si el telescopio de neutrinos IceCube va a tener la sensibilidad necesaria para extraer información relevante sobre dichos parámetros, información que está contenida en el número total de eventos detectados inducidos por neutrinos muónicos. De esta forma se establecerán los casos (conjunto de parámetros) para los cuales estas diferencias sean estadísticamente relevantes y permitan distinguir y discriminar entre los modelos de los parámetros.Tesi

    Análisis de los parámetros del flujo de neutrinos de núcleos activos de galaxias en el contexto del experimento IceCube

    Get PDF
    La presente tesis tiene como objetivo principal cuantificar las diferencias entre los diversos modelos de producción de neutrinos en NAGs, debidas a los parámetros que describen este flujo y determinar si el telescopio de neutrinos IceCube va a tener la sensibilidad necesaria para extraer información relevante sobre dichos parámetros, información que está contenida en el número total de eventos detectados inducidos por neutrinos muónicos. De esta forma se establecerán los casos (conjunto de parámetros) para los cuales estas diferencias sean estadísticamente relevantes y permitan distinguir y discriminar entre los modelos de los parámetros

    Multi-messenger model for the starburst galaxy M82

    Get PDF
    In this paper, a consistent model of the multifrequency emission of the starburst galaxy M82, from radio to gamma-rays is presented and discussed. Predictions for observations with Fermi, MAGIC II/VERITAS and CTA telescopes are made. The model is also used to self-consistenty compute the (all flavors) emission of neutrinos resulting from this starburst galaxy, what can be used in considerations of the diffuse contributions of such objects.Comment: Accepted for publication in The Astrophysical Journa

    Searches for Periodic Neutrino Emission from Binary Systems with 22 and 40 Strings of IceCube

    Get PDF
    Recent observations of GeV /TeV photon emission from several X-ray binaries have sparked a renewed interest in these objects as galactic particle accelerators. In spite of the available multi-wavelength data, their acceleration mechanisms are not determined, and the nature of the accelerated particles (hadrons or leptons) is unknown. While much evidence favors leptonic emission, it is very likely that a hadronic component is also accelerated in the jets of these binary systems. The observation of neutrino emission would be clear evidence for the presence of a hadronic component in the outflow of these sources. In this paper we look for periodic neutrino emission from binary systems. Such modulation, observed in the photon flux, would be caused by the geometry of these systems. The results of two searches are presented that differ in the treatment of the spectral shape and phase of the emission. The 'generic' search allows parameters to vary freely and best fit values, in a 'model-dependent' search, predictions are used to constrain these parameters. We use the IceCube data taken from May 31, 2007 to April 5, 2008 with its 22-string configuration, and from April 5, 2008 and May 20, 2009 with its 40-string configuration. For the generic search and the 40 string sample, we find that the most significant source in the catalog of 7 binary stars is Cygnus X-3 with a 1.8% probability after trials (2.10" sigma one-sided) of being produced by statistical fluctuations of the background. The model-dependent method tested a range of system geometries - the inclination and the massive star's disk size - for LS I+61 deg 303, no significant excess was found

    Searching for Soft Relativistic Jets in Core-Collapse Supernovae with the IceCube Optical Follow-up Program

    Get PDF
    Context. Transient neutrino sources such as Gamma-Ray Bursts (GRBs) and Supernovae (SNe) are hypothesized to emit bursts of high-energy neutrinos on a time-scale of < or approx.100 s. While GRB neutrinos would be produced in high relativistic jets, core-collapse SNe might host soft-relativistic jets, which become stalled in the outer layers of the progenitor star leading to an efficient production of high-energy neutrinos. Aims. To increase the sensitivity to these neutrinos and identify their sources, a low-threshold optical follow-up program for neutrino multiplets detected with the IceCube observatory has been implemented. Methods. If a neutrino multiplet, i.e. two or more neutrinos from the same direction within 100 s, is found by IceCube a trigger is sent to the Robotic Optical Transient Search Experiment, ROTSE. The 4 ROTSE telescopes immediately start an observation program of the corresponding region of the sky in order to detect an optical counterpart to the neutrino events. Results. No statistically significant excess in the rate of neutrino multiplets has been observed and furthermore no coincidence with an optical counterpart was found. Conclusions. The search allows, for the first time, to set stringent limits on current models predicting a high-energy neutrino flux from soft relativistic hadronic jets in core-collapse SNe. We conclude that a sub-population of SNe with typical Lorentz boost factor and jet energy of 10 and 3 x 10(exp 51) erg, respectively, does not exceed 4:2% at 90% confidence

    Observation of Anisotropy in the Galactic Cosmic Ray Arrival Directions at 400 TEV With IceCube

    Get PDF
    In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic ray induced muons recorded by the partially deployed IceCube observatory between May 2009 and May 2010. The data include a total of 33x l0(epx 9) muon events with a median angular resolution of approx 3 degrees. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic ray median energies of 20 and 400 Te V. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high energy skymap shows a different anisotropy structure including a deficit with a post-trial significance of -6.30 sigma. This anisotropy reveals a new feature of the Galactic cosmic ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays
    corecore