502 research outputs found

    Induction of distinct plant cell death programs by secreted proteins from the wheat pathogen Zymoseptoria tritici

    Get PDF
    Cell death processes in eukaryotes shape normal development and responses to the environment. For plant–microbe interactions, initiation of host cell death plays an important role in determining disease outcomes. Cell death pathways are frequently initiated following detection of pathogen-derived molecules which can lead to resistance or susceptibility to disease depending on pathogen lifestyle. We previously identified several small secreted proteins (SSPs) from the wheat-infecting fungus Zymoseptoria tritici that induce rapid cell death in Nicotiana benthamiana following Agrobacterium-mediated delivery and expression (agroinfiltration). Here we investigated whether the execution of host cells was mechanistically similar in response to different Z. tritici SSPs. Using RNA sequencing, we found that transient expression of four Z. tritici SSPs led to massive transcriptional reprogramming within 48 h of agroinfiltration. We observed that distinct host gene expression profiles were induced dependent on whether cell death occurs in a cell surface immune receptor-dependent or -independent manner. These gene expression profiles involved differential transcriptional networks mediated by WRKY, NAC and MYB transcription factors. In addition, differential expression of genes belonging to different classes of receptor-like proteins and receptor-like kinases was observed. These data suggest that different Z. tritici SSPs trigger differential transcriptional reprogramming in plant cells

    Evidence for intense REE scavenging at cold seeps from the Niger Delta margin

    No full text
    International audienceFor many trace elements, continental margins are the location of intense exchange processes between sediment and seawater, which control their distribution in the water column, but have yet to be fully understood. In this study, we have investigated the impact of fluid seepage at cold seeps on the marine cycle of neodymium. We determined dissolved and total dissolvable (TD) concentrations for REE and well-established tracers of fluid seepage (CH4, TDFe, TDMn), and Nd isotopic compositions in seawater samples collected above cold seeps and a reference site (i.e. away from any fluid venting area) from the Niger Delta margin. We also analyzed cold seep authigenic phases and various core-top sediment fractions (pore water, detrital component, easily leachable phases, uncleaned foraminifera) recovered near the hydrocast stations. Methane, TDFe and TDMn concentrations clearly indicate active fluid venting at the studied seeps, with plumes rising up to about 100 m above the seafloor. Depth profiles show pronounced REE enrichments in the non-filtered samples (TD concentrations) within plumes, whereas filtered samples (dissolved concentrations) exhibit slight REE depletion in plumes relative to the overlying water column and display typical seawater REE patterns. These results suggest that the net flux of REE emitted into seawater at cold seeps is controlled by the presence of particulate phases, most probably Fe-Mn oxyhydroxides associated to resuspended sediments. At the reference site, however, our data reveal significant enrichment for dissolved REE in bottom waters, that clearly relates to diffusive benthic fluxes from surface sediments. Neodymium isotopic ratios measured in the water column range from ΔNd ~−15.7 to − 10.4. Evidence that the ΔNd values for Antarctic Intermediate waters (AAIW) differed from those reported for the same water mass at open ocean settings shows that sediment/water interactions take place in the Gulf of Guinea. At each site, however, the bottom water ΔNd signature generally differs from that for cold seep minerals, easily leachable sediment phases, and detrital fractions from local sediments, ruling out the possibility that seepage of methane-rich fluids and sediment dissolution act as a substantial source of dissolved Nd to seawater in the Gulf of Guinea. Taken together, our data hence suggest that co-precipitation of Fe-Mn oxyhydroxide phases in sub-surface sediments leads to quantitative scavenging of dissolved REE at cold seeps, preventing their emission into bottom waters. Most probably, it is likely that diffusion from suboxic surface sediments dominates the exchange processes affecting the marine Nd cycle at the Niger Delta margin

    Characterization of an antimicrobial and phytotoxic ribonuclease secreted by the fungal wheat pathogen Zymoseptoria tritici

    Get PDF
    The fungus Zymoseptoria tritici is the causal agent of Septoria Tritici Blotch (STB) disease of wheat leaves. Zymoseptoria tritici secretes many functionally uncharacterized effector proteins during infection. Here, we characterized a secreted ribonuclease (Zt6) with an unusual biphasic expression pattern. Transient expression systems were used to characterize Zt6, and mutants thereof, in both host and non‐host plants. Cell‐free protein expression systems monitored the impact of Zt6 protein on functional ribosomes, and in vitro assays of cells treated with recombinant Zt6 determined toxicity against bacteria, yeasts and filamentous fungi. We demonstrated that Zt6 is a functional ribonuclease and that phytotoxicity is dependent on both the presence of a 22‐amino‐acid N‐terminal ‘loop’ region and its catalytic activity. Zt6 selectively cleaves both plant and animal rRNA species, and is toxic to wheat, tobacco, bacterial and yeast cells, but not to Z. tritici itself. Zt6 is the first Z. tritici effector demonstrated to have a likely dual functionality. The expression pattern of Zt6 and potent toxicity towards microorganisms suggest that, although it may contribute to the execution of wheat cell death, it is also likely to have an important secondary function in antimicrobial competition and niche protection

    North Atlantic deep water production during the last glacial maximum

    Get PDF
    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial–interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial ή13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters

    Combined pangenomics and transcriptomics reveals core and redundant virulence processes in a rapidly evolving fungal plant pathogen

    Get PDF
    Background Studying genomic variation in rapidly evolving pathogens potentially enables identification of genes supporting their “core biology”, being present, functional and expressed by all strains or “flexible biology”, varying between strains. Genes supporting flexible biology may be considered to be “accessory”, whilst the “core” gene set is likely to be important for common features of a pathogen species biology, including virulence on all host genotypes. The wheat-pathogenic fungus Zymoseptoria tritici represents one of the most rapidly evolving threats to global food security and was the focus of this study. Results We constructed a pangenome of 18 European field isolates, with 12 also subjected to RNAseq transcription profiling during infection. Combining this data, we predicted a “core” gene set comprising 9807 sequences which were; (1) present in all isolates; (2) lacking inactivating polymorphisms; and (3) expressed by all isolates. A large accessory genome, consisting of 45% of the total genes was also defined. We classified genetic and genomic polymorphism at both chromosomal and individual gene scales. Proteins required for essential functions including virulence, had lower-than average sequence variability amongst core genes. Both core and accessory genomes encoded many small, secreted candidate effector proteins that likely interact with plant immunity. Viral vector-mediated transient in planta overexpression of 88 candidates failed to identify any which induced leaf necrosis characteristic of disease. However, functional complementation of a non-pathogenic deletion mutant lacking five core genes, demonstrated that full virulence was restored by re-introduction of the single gene exhibiting least sequence polymorphism and highest expression. Conclusions These data support the combined use of pangenomics and transcriptomics for defining genes which represent core, and potentially exploitable, weaknesses in rapidly evolving pathogens

    TerrHum: an iPhone app for classifying forest humipedons.

    Get PDF
    The knowledge of a little number of specific terms is necessary to investigate and describe the forest topsoils: diagnostic components, diagnostic organic and organic-mineral horizons and the 17 series of humus horizons composing all the observed real forest not submerged topsoils. Diagnostic horizons are grouped in humus forms, which represent five humus systems. To become a good topsoil investigator is then only a question of field experience. No mean to do otherwise: you must go in the field with a blade and a good manual and put your hand in the soil. You have to make a hole and to observe on your knee a wall of the pit, from the top to the bottom, detecting all the characters that you find indicated in the manual. At the beginning you will be discouraged, things change from a site to another and never are exactly as in the manual. After few days of difficult survey, you will be able to know your soil even without doing a hole. Be patient and follow what it is indicated in the published first eight articles of Humusica (http://intra.tesaf.unipd.it/people/zanella/hmanual.html). On the poster, you find some examples of diagnostic properties of forest topsoils, and a dichotomy key of classification, you can copy paste and take with you in the field. An iPhone application (Terrhum) allows to bring in the field the necessary information for a fast classification of the topsoil

    TerrHum: an iOS application for classifying terrestrial humipedons and some considerations about soil classification

    Get PDF
    International audienceThe name TerrHum is an abbreviation of the words “Terrestrial” (not hydromorphic, not submerged) and “Humipedon” (organic and organic-mineral humus horizons). With this application, it is possible to describe and classify terrestrial forest and grassland topsoils in a system published as a Special Issue entitled “Humusica 1– Terrestrial Natural Humipedons” in the journal Applied Soil Ecology. The iOS application TerrHum allows the storage of the main content of Humusica 1 on a cellular phone. Images, diagrams and simplified tables of classification may be recalled with a few touches on the screen. Humus forms, representing five humus systems, are classified based on the vertical arrangement of diagnostic horizons and their attributes. TerrHum allows accessing specific figures that are stored in a virtual cloud and can be downloaded the first time the user recalls them. Once all figures have been opened in the device, the application is ready to use, without any further internet connection. The application is in continuous evolution
    • 

    corecore