1,887 research outputs found
Resonant photoemission at the absorption edge of Mn and Ti and electronic structure of 1T-MnTiSe
Resonant valence-band X-ray photoelectron spectra (ResPES) excited near
2p core level energies, 2p X-ray photoelectron spectra (XPS) and
L X-ray absorption spectra (XAS) of Ti and Mn in single crystal of
1T-MnTiSe were studied for the first time. The ionic-covalent character
of bonds formed by Mn atoms with the neighboring Se atoms in the octahedral
coordination is established. From the XPS and XAS measurements compared with
results of atomic multiplet calculations of Ti and Mn L XAS it is found
that Ti atoms are in ionic state of 4+ and Mn atoms are in the state of 2+. In
ResPES of MnTiSe excited near Ti 2p and Mn 2p
absorption edges the Ti 3d and Mn 3d bands at binding energies just below the
Fermi level are observed. According to band structure calculations
E the Ti 3d states are localized in the vicinity of
point and the Mn 3d states are localized along the direction
K--M in the Brillouin zone of the crystal.Comment: 18 pages (preprint), 9 figure
Spatially Resolved Outflows in a Seyfert Galaxy at z = 2.39
We present the first spatially resolved analysis of rest-frame optical and UV
imaging and spectroscopy for a lensed galaxy at z = 2.39 hosting a Seyfert
active galactic nucleus (AGN). Proximity to a natural guide star has enabled
high signal-to-noise VLT SINFONI + adaptive optics observations of rest-frame
optical diagnostic emission lines, which exhibit an underlying broad component
with FWHM ~ 700 km/s in both the Balmer and forbidden lines. Measured line
ratios place the outflow robustly in the region of the ionization diagnostic
diagrams associated with AGN. This unique opportunity - combining gravitational
lensing, AO guiding, redshift, and AGN activity - allows for a magnified view
of two main tracers of the physical conditions and structure of the
interstellar medium in a star-forming galaxy hosting a weak AGN at cosmic noon.
By analyzing the spatial extent and morphology of the Ly-alpha and
dust-corrected H-alpha emission, disentangling the effects of star formation
and AGN ionization on each tracer, and comparing the AGN induced mass outflow
rate to the host star formation rate, we find that the AGN does not
significantly impact the star formation within its host galaxy.Comment: 16 pages, 5 figures, accepted for publication in Ap
NGTS-4b: A sub-Neptune transiting in the desert
We report the discovery of NGTS-4b, a sub-Neptune-sized planet transiting a 13th magnitude K-dwarf in a 1.34 d orbit. NGTS-4b has a mass M = 20.6 ± 3.0 M⊕ and radius R = 3.18 ± 0.26 R⊕, which places it well within the so-called ‘Neptunian Desert’. The mean density of the planet (3.45 ± 0.95 g cm−3) is consistent with a composition of 100 per cent H2O or a rocky core with a volatile envelope. NGTS-4b is likely to suffer significant mass loss due to relatively strong EUV/X-ray irradiation. Its survival in the Neptunian desert may be due to an unusually high-core mass, or it may have avoided the most intense X-ray irradiation by migrating after the initial activity of its host star had subsided. With a transit depth of 0.13 ± 0.02 per cent, NGTS-4b represents the shallowest transiting system ever discovered from the ground, and is the smallest planet discovered in a wide-field ground-based photometric survey
A Finite Element Computation of the Gravitational Radiation emitted by a Point-like object orbiting a Non-rotating Black Hole
The description of extreme-mass-ratio binary systems in the inspiral phase is
a challenging problem in gravitational wave physics with significant relevance
for the space interferometer LISA. The main difficulty lies in the evaluation
of the effects of the small body's gravitational field on itself. To that end,
an accurate computation of the perturbations produced by the small body with
respect the background geometry of the large object, a massive black hole, is
required. In this paper we present a new computational approach based on Finite
Element Methods to solve the master equations describing perturbations of
non-rotating black holes due to an orbiting point-like object. The numerical
computations are carried out in the time domain by using evolution algorithms
for wave-type equations. We show the accuracy of the method by comparing our
calculations with previous results in the literature. Finally, we discuss the
relevance of this method for achieving accurate descriptions of
extreme-mass-ratio binaries.Comment: RevTeX 4. 18 pages, 8 figure
High-order numerical method for the nonlinear Helmholtz equation with material discontinuities in one space dimension
The nonlinear Helmholtz equation (NLH) models the propagation of
electromagnetic waves in Kerr media, and describes a range of important
phenomena in nonlinear optics and in other areas. In our previous work, we
developed a fourth order method for its numerical solution that involved an
iterative solver based on freezing the nonlinearity. The method enabled a
direct simulation of nonlinear self-focusing in the nonparaxial regime, and a
quantitative prediction of backscattering. However, our simulations showed that
there is a threshold value for the magnitude of the nonlinearity, above which
the iterations diverge. In this study, we numerically solve the one-dimensional
NLH using a Newton-type nonlinear solver. Because the Kerr nonlinearity
contains absolute values of the field, the NLH has to be recast as a system of
two real equations in order to apply Newton's method. Our numerical simulations
show that Newton's method converges rapidly and, in contradistinction with the
iterations based on freezing the nonlinearity, enables computations for very
high levels of nonlinearity. In addition, we introduce a novel compact
finite-volume fourth order discretization for the NLH with material
discontinuities.The one-dimensional results of the current paper create a
foundation for the analysis of multi-dimensional problems in the future.Comment: 47 pages, 8 figure
Numerical simulations of current generation and dynamo excitation in a mechanically-forced, turbulent flow
The role of turbulence in current generation and self-excitation of magnetic
fields has been studied in the geometry of a mechanically driven, spherical
dynamo experiment, using a three dimensional numerical computation. A simple
impeller model drives a flow which can generate a growing magnetic field,
depending upon the magnetic Reynolds number, Rm, and the fluid Reynolds number.
When the flow is laminar, the dynamo transition is governed by a simple
threshold in Rm, above which a growing magnetic eigenmode is observed. The
eigenmode is primarily a dipole field tranverse to axis of symmetry of the
flow. In saturation the Lorentz force slows the flow such that the magnetic
eigenmode becomes marginally stable. For turbulent flow, the dynamo eigenmode
is suppressed. The mechanism of suppression is due to a combination of a time
varying large-scale field and the presence of fluctuation driven currents which
effectively enhance the magnetic diffusivity. For higher Rm a dynamo reappears,
however the structure of the magnetic field is often different from the laminar
dynamo; it is dominated by a dipolar magnetic field which is aligned with the
axis of symmetry of the mean-flow, apparently generated by fluctuation-driven
currents. The fluctuation-driven currents have been studied by applying a weak
magnetic field to laminar and turbulent flows. The magnetic fields generated by
the fluctuations are significant: a dipole moment aligned with the symmetry
axis of the mean-flow is generated similar to those observed in the experiment,
and both toroidal and poloidal flux expulsion are observed.Comment: 14 pages, 14 figure
The Mass-Radius Relationship for Very Low Mass Stars: Four New Discoveries from the HATSouth Survey
We report the discovery of four transiting F-M binary systems with companions
between 0.1-0.2 Msun in mass by the HATSouth survey. These systems have been
characterised via a global analysis of the HATSouth discovery data, combined
with high-resolution radial velocities and accurate transit photometry
observations. We determined the masses and radii of the component stars using a
combination of two methods: isochrone fitting of spectroscopic primary star
parameters, and equating spectroscopic primary star rotation velocity with
spin-orbit synchronisation. These new very low mass companions are HATS550-016B
(0.110 -0.006/+0.005 Msun, 0.147 -0.004/+0.003 Rsun), HATS551-019B (0.17
-0.01/+0.01 Msun, 0.18 -0.01/+0.01 Rsun), HATS551-021B (0.132 -0.005/+0.014
Msun, 0.154 -0.008/+0.006 Rsun), HATS553-001B (0.20 -0.02/+0.01 Msun, 0.22
-0.01/+0.01 Rsun). We examine our sample in the context of the radius anomaly
for fully-convective low mass stars. Combining our sample with the 13 other
well-studied very low mass stars, we find a tentative 5% systematic deviation
between the measured radii and theoretical isochrone models.Comment: 17 pages, 8 figures, accepted for publication in MNRA
Topological Surface States and Dirac point tuning in ternary Bi2Te2Se class of topological insulators
Using angle-resolved photoemission spectroscopy, we report electronic
structure for representative members of ternary topological insulators. We show
that several members of this family, such as Bi2Se2Te, Bi2Te2Se, and GeBi2Te4,
exhibit a singly degenerate Dirac-like surface state, while Bi2Se2S is a fully
gapped insulator with no measurable surface state. One of these compounds,
Bi2Se2Te, shows tunable surface state dispersion upon its electronic alloying
with Sb (SbxBi2-xSe2Te series). Other members of the ternary family such as
GeBi2Te4 and BiTe1.5S1.5 show an in-gap surface Dirac point, the former of
which has been predicted to show nonzero weak topological invariants such as
(1;111); thus belonging to a different topological class than BiTe1.5S1.5. The
measured band structure presented here will be a valuable guide for
interpreting transport, thermoelectric, and thermopower measurements on these
compounds. The unique surface band topology observed in these compounds
contributes towards identifying designer materials with desired flexibility
needed for thermoelectric and spintronic device fabrication.Comment: 9 pages, 6 figures; Related results at
http://online.kitp.ucsb.edu/online/topomat11/hasan
- …