424 research outputs found

    LM cathode thruster system Quarterly progress report, 4 Oct. 1969 - 4 Jan. 1970

    Get PDF
    Optimization testing of thermally integrated liquid mercury cathode thruster syste

    The effect of IGFC warm gas cleanup system conditions on the gas-solid partitioning and form of trace species in coal syngas and their interactions with SOFC anodes

    Get PDF
    The U.S. Department of Energy is currently working on coupling coal gasification and high temperature fuel cell to produce electrical power in a highly efficient manner while being emissions free. Many investigations have already investigated the effects of major coal syngas species such as CO and H2S. However coal contains many trace species and the effect of these species on solid oxide fuel cell anode is not presently known. Warm gas cleanup systems are planned to be used with these advanced power generation systems for the removal of major constituents such as H2S and HCl but the operational parameters of such systems is not well defined at this point in time. This paper focuses on the effect of anticipated warm gas cleanup conditions has on trace specie partitioning between the vapor and condensed phase and the effects the trace vapor species have on the SOFC anode. Results show that Be, Cr, K, Na, V, and Z trace species will form condensed phases and should not effect SOFC anode performance since it is anticipated that the warm gas cleanup systems will have a high removal efficiency of particulate matter. Also the results show that Sb, As, Cd, Hg, Pb, P, and Se trace species form vapor phases and the Sb, As, and P vapor phase species show the ability to form secondary Ni phases in the SOFC anode

    Role of a cdk5-associated protein, p35, in herpes simplex virus type 1 replication in vivo

    Get PDF
    Previous studies have shown that herpes simplex virus type 1 (HSV-1) replication is inhibited by the cyclin-dependent kinase (cdk) inhibitor roscovitine. One roscovitine-sensitive cdk that functions in neurons is cdk5, which is activated in part by its binding partner, p35. Because HSV establishes latent infections in sensory neurons, we sought to determine the role p35 plays in HSV-1 replication in vivo. For these studies, wild-type (wt) and p35-/- mice were infected with HSV-1 using the mouse ocular model of HSV latency and reactivation. The current results indicate that p35 is an important determinant of viral replication in vivo

    Supernovae Shock Breakout/Emergence Detection Predictions for a Wide-Field X-ray Survey

    Full text link
    There are currently many large-field surveys operational and planned including the powerful Vera C. Rubin Observatory Legacy Survey of Space and Time. These surveys will increase the number and diversity of transients dramatically. However, for some transients, like supernovae (SNe), we can gain more understanding by directed observations (e.g. shock breakout, Îł\gamma-ray detections) than by simply increasing the sample size. For example, the initial emission from these transients can be a powerful probe of these explosions. Upcoming ground-based detectors are not ideally suited to observe the initial emission (shock emergence) of these transients. These observations require a large field-of-view X-ray mission with a UV follow up within the first hour of shock breakout. The emission in the first one hour to even one day provides strong constraints on the stellar radius and asymmetries in the outer layers of stars, the properties of the circumstellar medium (e.g. inhomogeneities in the wind for core-collapse SNe, accreting companion in thermonuclear SNe), and the transition region between these two. This paper describes a simulation for the number of SNe that could be seen by a large field of view lobster eye X-ray and UV observatory.Comment: 13 pages, 7 figures, submitted to Ap

    Machinery Purchasing

    Get PDF
    Discussion Grou

    Magnetic inflation and Stellar Mass. II. On the radii of wingle, rapidly rotating, fully convective M-dwarf stars

    Get PDF
    Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their Rsin⁡iR\sin i distribution. We combine photometric rotation periods from the literature with rotational broadening (vsin⁡iv\sin i) measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 \% \mbox{--}15{ \% }_{-2.5}^{+3}, but that at higher masses (0.18 < M < 0.4 M Sun), the discrepancy is only about 6% and comparable to results from interferometry and eclipsing binaries. At the lowest masses (0.08 < M < 0.18 M Sun), we find that the discrepancy between observations and theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.The authors would like to thank the referee for the thoughtful report, which greatly improved the manuscript. The authors would also like to thank Lisa Prato and Larissa Nofi for IGRINS training, and Heidi Larson, Jason Sanborn, and Andrew Hayslip for operating the DCT during our observations. We would also like to thank Jen Winters, Jonathan Irwin, Paul Dalba, Mark Veyette, Eunkyu Han, and Andrew Vanderburg for useful discussions and helpful comments on this work. Some of this work was supported by the NASA Exoplanet Research Program (XRP) under grant No. NNX15AG08G issued through the Science Mission Directorate.These results made use of the Lowell Observatory's Discovery Channel Telescope, supported by Discovery Communications, Inc., Boston University, the University of Maryland, the University of Toledo and Northern Arizona University; the Immersion Grating Infrared Spectrograph (IGRINS) that was developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the US National Science Foundation under grant AST-1229522, of the University of Texas at Austin, and of the Korean GMT Project of KASI; data taken at The McDonald Observatory of The University of Texas at Austin; and data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the NSF. (NNX15AG08G - NASA Exoplanet Research Program (XRP); Discovery Communications, Inc.; Boston University; University of Maryland; University of Toledo; Northern Arizona University; AST-1229522 - US National Science Foundation; University of Texas at Austin; Korean GMT Project of KASI; NASA; NSF

    NIK regulates MT1-MMP activity and promotes glioma cell invasion independently of the canonical NF-ÎșB pathway

    Get PDF
    A growing body of evidence implicates the noncanonical NF-ÎșB pathway as a key driver of glioma invasiveness and a major factor underlying poor patient prognoses. Here, we show that NF-ÎșB-inducing kinase (NIK/MAP3K14), a critical upstream regulator of the noncanonical NF-ÎșB pathway, is both necessary and sufficient for cell-intrinsic invasion, as well as invasion induced by the cytokine TWEAK, which is strongly associated with tumor pathogenicity. NIK promotes dramatic alterations in glioma cell morphology that are characterized by extensive membrane branching and elongated pseudopodial protrusions. Correspondingly, NIK increases the phosphorylation, enzymatic activity and pseudopodial localization of membrane type-1 matrix metalloproteinase (MT1-MMP/MMP14), which is associated with enhanced tumor cell invasion of three-dimensional collagen matrices. Moreover, NIK regulates MT1-MMP activity in cells lacking the canonical NF-ÎșB p65 and cRel proteins. Finally, increased expression of NIK is associated with elevated MT1-MMP phosphorylation in orthotopic xenografts and co-expression of NIK and MT1-MMP in human tumors is associated with poor glioma patient survival. These data reveal a novel role of NIK to enhance pseudopodia formation, MT1-MMP enzymatic activity and tumor cell invasion independently of p65. Collectively, our findings underscore the therapeutic potential of approaches targeting NIK in highly invasive tumors
    • 

    corecore