206 research outputs found
CS Lines Profiles in Hot Cores
We present a theoretical study of CS line profiles in archetypal hot cores.
We provide estimates of line fluxes from the CS(1-0) to the CS(15-14)
transitions and present the temporal variation of these fluxes. We find that
\textit{i)} the CS(1-0) transition is a better tracer of the Envelope of the
hot core whereas the higher-J CS lines trace the ultra-compact core;
\textit{ii)} the peak temperature of the CS transitions is a good indicator of
the temperature inside the hot core; \textit{iii)} in the Envelope, the older
the hot core the stronger the self-absorption of CS; \textit{iv)} the
fractional abundance of CS is highest in the innermost parts of the
ultra-compact core, confirming the CS molecule as one of the best tracers of
very dense gas.Comment: 17 pages, 5 figures, 1 table, In press in Ap
Mapping CS in Starburst Galaxies: Disentangling and Characterising Dense Gas
Aims. We observe the dense gas tracer CS in two nearby starburst galaxies to
determine how the conditions of the dense gas varies across the circumnuclear
regions in starburst galaxies. Methods. Using the IRAM-30m telescope, we mapped
the distribution of the CS(2-1) and CS(3-2) lines in the circumnuclear regions
of the nearby starburst galaxies NGC 3079 and NGC 6946. We also detected the
formaldehyde (H2CO) and methanol (CH3OH) in both galaxies. We marginally detect
the isotopologue C34S. Results. We calculate column densities under LTE
conditions for CS and CH3OH. Using the detections accumulated here to guide our
inputs, we link a time and depth dependent chemical model with a molecular line
radiative transfer model; we reproduce the observations, showing how conditions
where CS is present are likely to vary away from the galactic centres.
Conclusions. Using the rotational diagram method for CH3OH, we obtain a lower
limit temperature of 14 K. In addition to this, by comparing the chemical and
radiative transfer models to observations, we determine the properties of the
dense gas as traced by CS (and CH3OH). We also estimate the quantity of the
dense gas. We find that, provided that there are a between 10^5 and 10^6 dense
cores in our beam, for both target galaxies, emission of CS from warm (T = 100
- 400 K), dense (n(H2) = 10^5-6 cm-3) cores, possibly with a high cosmic ray
ionisation rate (zeta = 100 zeta0) best describes conditions for our central
pointing. In NGC 6946, conditions are generally cooler and/or less dense
further from the centre, whereas in NGC 3079, conditions are more uniform. The
inclusion of shocks allows for more efficient CS formation, leading to an order
of magnitude less dense gas being required to replicate observations in some
cases.Comment: 14 pages, 10 figures, accepted to A&
Extragalactic CS survey
We present a coherent and homogeneous multi-line study of the CS molecule in
nearby (D10Mpc) galaxies. We include, from the literature, all the available
observations from the to the transitions towards NGC 253, NGC
1068, IC 342, Henize~2-10, M~82, the Antennae Galaxies and M~83. We have, for
the first time, detected the CS(7-6) line in NGC 253, M~82 (both in the
North-East and South-West molecular lobes), NGC 4038, M~83 and tentatively in
NGC 1068, IC 342 and Henize~2-10. We use the CS molecule as a tracer of the
densest gas component of the ISM in extragalactic star-forming regions,
following previous theoretical and observational studies by Bayet et al.
(2008a,b and 2009). In this first paper out of a series, we analyze the CS data
sample under both Local Thermodynamical Equilibrium (LTE) and non-LTE (Large
Velocity Gradient-LVG) approximations. We show that except for M~83 and Overlap
(a shifted gas-rich position from the nucleus NGC 4039 in the Antennae
Galaxies), the observations in NGC 253, IC 342, M~82-NE, M~82-SW and NGC 4038
are not well reproduced by a single set of gas component properties and that,
at least, two gas components are required. For each gas component, we provide
estimates of the corresponding kinetic temperature, total CS column density and
gas density.Comment: 17 pages, 16 figures, 3 tables, Accepted to Ap
The influence of cosmic rays in the circumnuclear molecular gas of NGC1068
We surveyed the circumnuclear disk of the Seyfert galaxy NGC1068 between the
frequencies 86.2 GHz and 115.6 GHz, and identified 17 different molecules.
Using a time and depth dependent chemical model we reproduced the observational
results, and show that the column densities of most of the species are better
reproduced if the molecular gas is heavily pervaded by a high cosmic ray
ionization rate of about 1000 times that of the Milky Way. We discuss how
molecules in the NGC1068 nucleus may be influenced by this external radiation,
as well as by UV radiation fields.Comment: 6 pages. Conference proceeding for the workshop on "Cosmic-ray
induced phenomenology in star-forming environments" held in Sant Cugat,
Spain, on April 16-19, 201
Chemical complexity in NGC1068
We aimed to study the chemistry of the circumnuclear molecular gas of
NGC1068, and to compare it with those of the starburst galaxies M82 and NGC253.
Using the IRAM-30m telescope, we observed the inner 2 kpc of NGC1068 between
86.2 GHz and 115.6 GHz. We identified 35 spectral features, corresponding to 24
different molecular species. Among them, HC3N, SO, N2H+, CH3CN, NS, 13CN, and
HN13C are detected for the first time in NGC1068. Assuming local thermodynamic
equilibrium (LTE), we calculated the column densities of the detected
molecules, as well as the upper limits to the column densities of some
undetected species. The comparison among the chemistries of NGC1068, M82, and
NGC253, suggests that, apart from X-rays, shocks also determine the chemistry
of NGC1068. We propose the column density ratio between CH3CCH and HC3N as a
prime indicator of the imprints of starburst and AGN environments in the
circumnuclear interstellar medium. This ratio is, at least, 64 times larger in
M82 than in NGC1068, and, at least, 4 times larger in NGC253 than in NGC1068.
Finally, we used the UCL_CHEM and UCL_PDR chemical codes to constrain the
origin of the species, as well as to test the influence of UV radiation fields
and cosmic rays on the observed abundances.Comment: 8 pages, 2 figures, 3 tables. Proceedings of the "The Central
Kiloparsec in Galactic Nuclei", 29 August - 2 September 2011, Bad Honnef,
German
Photodissociation chemistry footprints in the Starburst galaxy NGC 253
We report the first detection of PDR molecular tracers, namely HOC+, and CO+,
and confirm the detection of the also PDR tracer HCO towards the starburst
galaxy NGC 253, claimed to be mainly dominated by shock heating and in an
earlier stage of evolution than M 82, the prototypical extragalactic PDR. Our
CO+ detection suffers from significant blending to a group of transitions of
13CH3OH, tentatively detected for the first time in the extragalactic
interstellar medium. These species are efficiently formed in the highly UV
irradiated outer layers of molecular clouds, as observed in the late stage
nuclear starburst in M 82. The molecular abundance ratios we derive for these
molecules are very similar to those found in M 82. This strongly supports the
idea that these molecules are tracing the PDR component associated with the
starburst in the nuclear region of NGC 253. A comparison with the predictions
of chemical models for PDRs shows that the observed molecular ratios are
tracing the outer layers of UV illuminated clouds up to two magnitudes of
visual extinction. Chemical models, which include grain formation and
photodissociation of HNCO, support the scenario of a photo-dominated chemistry
as an explanation to the abundances of the observed species. From this
comparison we conclude that the molecular clouds in NGC 253 are more massive
and with larger column densities than those in M 82, as expected from the
evolutionary stage of the starbursts in both galaxies.Comment: 32 pages, 4 figures, Published in Ap
Molecular tracers of PDR-dominated galaxies
Photon-dominated regions (PDRs) are powerful molecular line emitters in
external galaxies. They are expected in galaxies with high rates of massive
star formation due to either starburst (SB) events or starburst coupled with
active galactic nuclei (AGN) events. We have explored the PDR chemistry for a
range of physical conditions representing a variety of galaxy types. Our main
result is a demonstration of the sensitivity of the chemistry to changes in the
physical conditions. We adopt crude estimates of relevant physical parameters
for several galaxy types and use our models to predict suitable molecular
tracers of those conditions. The set of recommended molecular tracers differs
from that which we recommended for use in galaxies with embedded massive stars.
Thus, molecular observations can in principle be used to distinguish between
excitation by starburst and by SB+AGN in distant galaxies. Our recommendations
are intended to be useful in preparing Herschel and ALMA proposals to identify
sources of excitation in galaxies.Comment: 18 pages, 6 figures, Accepted in Ap
Tracing high density gas in M 82 and NGC 4038
We present the first detection of CS in the Antennae galaxies towards the NGC
4038 nucleus, as well as the first detections of two high-J (5-4 and 7-6) CS
lines in the center of M 82. The CS(7-6) line in M 82 shows a profile that is
surprisingly different to those of other low-J CS transitions we observed. This
implies the presence of a separate, denser and warmer molecular gas component.
The derived physical properties and the likely location of the CS(7-6) emission
suggests an association with the supershell in the centre of M 82.Comment: 10 pages, 3 figures, ApJ Letter - ACCEPTE
A Census of the High-Density Molecular Gas in M82
We present a three-pointing study of the molecular gas in the starburst
nucleus of M82 based on 190 - 307 GHz spectra obtained with Z-Spec at the
Caltech Submillimeter Observatory. We present intensity measurements,
detections and upper limits, for 20 transitions, including several new
detections of CS, HNC, C2H, H2CO, and CH3CCH lines. We combine our measurements
with previously-published measurements at other frequencies for HCN, HNC, CS,
C34S, and HCO+ in a multi-species likelihood analysis constraining gas mass,
density and temperature, and the species' relative abundances. We find some 1.7
- 2.7 x 10^8 M_sun of gas with n_H2 between 1 - 6 x 10^4 cm^-3 and T > 50 K.
While the mass and temperature are comparable to values inferred from mid-J CO
transitions, the thermal pressure is a factor of 10 - 20 greater. The molecular
interstellar medium is largely fragmented and is subject to ultraviolet
irradiation from the star clusters. It is also likely subject to cosmic rays
and mechanical energy input from the supernovae, and is warmer on average than
the molecular gas in the massive star formation regions in the Milky Way. The
typical conditions in the dense gas in M82's central kpc appear unfavorable for
further star formation; if any appreciable stellar populations are currently
forming, they are likely biased against low mass stars, producing a top-heavy
initial mass function.Comment: 15 pages (using emulateapj.cls), 6 figures, Astrophysical Journal, in
pres
Molecular tracers of high mass star-formation in external galaxies
Hot core molecules should be detectable in external active galaxies out to
high redshift. We present here a detailed study of the chemistry of
star-forming regions under physical conditions that differ significantly from
those likely to be appropriate in the Milky Way Galaxy. We examine, in
particular, the trends in molecular abundances as a function of time with
respect to changes in the relevant physical parameters. These parameters
include metallicity, dust:gas mass ratio, the H formation rate, relative
initial elemental abundances, the cosmic ray ionization rate, and the
temperature of hot cores. These trends indicate how different tracers provide
information on the physical conditions and on evolutionary age. We identify hot
core tracers for several observed galaxies that are considered to represent
spirals, active galaxies, low-metallicity galaxies, and high-redshift galaxies.
Even in low-metallicity examples, many potential molecular tracers should be
present at levels high enough to allow unresolved detection of active galaxies
at high redshift containing large numbers of hot cores.Comment: 11 pages, 8 figures, accepted in Ap
- …