206 research outputs found

    CS Lines Profiles in Hot Cores

    Full text link
    We present a theoretical study of CS line profiles in archetypal hot cores. We provide estimates of line fluxes from the CS(1-0) to the CS(15-14) transitions and present the temporal variation of these fluxes. We find that \textit{i)} the CS(1-0) transition is a better tracer of the Envelope of the hot core whereas the higher-J CS lines trace the ultra-compact core; \textit{ii)} the peak temperature of the CS transitions is a good indicator of the temperature inside the hot core; \textit{iii)} in the Envelope, the older the hot core the stronger the self-absorption of CS; \textit{iv)} the fractional abundance of CS is highest in the innermost parts of the ultra-compact core, confirming the CS molecule as one of the best tracers of very dense gas.Comment: 17 pages, 5 figures, 1 table, In press in Ap

    Mapping CS in Starburst Galaxies: Disentangling and Characterising Dense Gas

    Full text link
    Aims. We observe the dense gas tracer CS in two nearby starburst galaxies to determine how the conditions of the dense gas varies across the circumnuclear regions in starburst galaxies. Methods. Using the IRAM-30m telescope, we mapped the distribution of the CS(2-1) and CS(3-2) lines in the circumnuclear regions of the nearby starburst galaxies NGC 3079 and NGC 6946. We also detected the formaldehyde (H2CO) and methanol (CH3OH) in both galaxies. We marginally detect the isotopologue C34S. Results. We calculate column densities under LTE conditions for CS and CH3OH. Using the detections accumulated here to guide our inputs, we link a time and depth dependent chemical model with a molecular line radiative transfer model; we reproduce the observations, showing how conditions where CS is present are likely to vary away from the galactic centres. Conclusions. Using the rotational diagram method for CH3OH, we obtain a lower limit temperature of 14 K. In addition to this, by comparing the chemical and radiative transfer models to observations, we determine the properties of the dense gas as traced by CS (and CH3OH). We also estimate the quantity of the dense gas. We find that, provided that there are a between 10^5 and 10^6 dense cores in our beam, for both target galaxies, emission of CS from warm (T = 100 - 400 K), dense (n(H2) = 10^5-6 cm-3) cores, possibly with a high cosmic ray ionisation rate (zeta = 100 zeta0) best describes conditions for our central pointing. In NGC 6946, conditions are generally cooler and/or less dense further from the centre, whereas in NGC 3079, conditions are more uniform. The inclusion of shocks allows for more efficient CS formation, leading to an order of magnitude less dense gas being required to replicate observations in some cases.Comment: 14 pages, 10 figures, accepted to A&

    Extragalactic CS survey

    Full text link
    We present a coherent and homogeneous multi-line study of the CS molecule in nearby (D<<10Mpc) galaxies. We include, from the literature, all the available observations from the J=1−0J=1-0 to the J=7−6J=7-6 transitions towards NGC 253, NGC 1068, IC 342, Henize~2-10, M~82, the Antennae Galaxies and M~83. We have, for the first time, detected the CS(7-6) line in NGC 253, M~82 (both in the North-East and South-West molecular lobes), NGC 4038, M~83 and tentatively in NGC 1068, IC 342 and Henize~2-10. We use the CS molecule as a tracer of the densest gas component of the ISM in extragalactic star-forming regions, following previous theoretical and observational studies by Bayet et al. (2008a,b and 2009). In this first paper out of a series, we analyze the CS data sample under both Local Thermodynamical Equilibrium (LTE) and non-LTE (Large Velocity Gradient-LVG) approximations. We show that except for M~83 and Overlap (a shifted gas-rich position from the nucleus NGC 4039 in the Antennae Galaxies), the observations in NGC 253, IC 342, M~82-NE, M~82-SW and NGC 4038 are not well reproduced by a single set of gas component properties and that, at least, two gas components are required. For each gas component, we provide estimates of the corresponding kinetic temperature, total CS column density and gas density.Comment: 17 pages, 16 figures, 3 tables, Accepted to Ap

    The influence of cosmic rays in the circumnuclear molecular gas of NGC1068

    Full text link
    We surveyed the circumnuclear disk of the Seyfert galaxy NGC1068 between the frequencies 86.2 GHz and 115.6 GHz, and identified 17 different molecules. Using a time and depth dependent chemical model we reproduced the observational results, and show that the column densities of most of the species are better reproduced if the molecular gas is heavily pervaded by a high cosmic ray ionization rate of about 1000 times that of the Milky Way. We discuss how molecules in the NGC1068 nucleus may be influenced by this external radiation, as well as by UV radiation fields.Comment: 6 pages. Conference proceeding for the workshop on "Cosmic-ray induced phenomenology in star-forming environments" held in Sant Cugat, Spain, on April 16-19, 201

    Chemical complexity in NGC1068

    Full text link
    We aimed to study the chemistry of the circumnuclear molecular gas of NGC1068, and to compare it with those of the starburst galaxies M82 and NGC253. Using the IRAM-30m telescope, we observed the inner 2 kpc of NGC1068 between 86.2 GHz and 115.6 GHz. We identified 35 spectral features, corresponding to 24 different molecular species. Among them, HC3N, SO, N2H+, CH3CN, NS, 13CN, and HN13C are detected for the first time in NGC1068. Assuming local thermodynamic equilibrium (LTE), we calculated the column densities of the detected molecules, as well as the upper limits to the column densities of some undetected species. The comparison among the chemistries of NGC1068, M82, and NGC253, suggests that, apart from X-rays, shocks also determine the chemistry of NGC1068. We propose the column density ratio between CH3CCH and HC3N as a prime indicator of the imprints of starburst and AGN environments in the circumnuclear interstellar medium. This ratio is, at least, 64 times larger in M82 than in NGC1068, and, at least, 4 times larger in NGC253 than in NGC1068. Finally, we used the UCL_CHEM and UCL_PDR chemical codes to constrain the origin of the species, as well as to test the influence of UV radiation fields and cosmic rays on the observed abundances.Comment: 8 pages, 2 figures, 3 tables. Proceedings of the "The Central Kiloparsec in Galactic Nuclei", 29 August - 2 September 2011, Bad Honnef, German

    Photodissociation chemistry footprints in the Starburst galaxy NGC 253

    Full text link
    We report the first detection of PDR molecular tracers, namely HOC+, and CO+, and confirm the detection of the also PDR tracer HCO towards the starburst galaxy NGC 253, claimed to be mainly dominated by shock heating and in an earlier stage of evolution than M 82, the prototypical extragalactic PDR. Our CO+ detection suffers from significant blending to a group of transitions of 13CH3OH, tentatively detected for the first time in the extragalactic interstellar medium. These species are efficiently formed in the highly UV irradiated outer layers of molecular clouds, as observed in the late stage nuclear starburst in M 82. The molecular abundance ratios we derive for these molecules are very similar to those found in M 82. This strongly supports the idea that these molecules are tracing the PDR component associated with the starburst in the nuclear region of NGC 253. A comparison with the predictions of chemical models for PDRs shows that the observed molecular ratios are tracing the outer layers of UV illuminated clouds up to two magnitudes of visual extinction. Chemical models, which include grain formation and photodissociation of HNCO, support the scenario of a photo-dominated chemistry as an explanation to the abundances of the observed species. From this comparison we conclude that the molecular clouds in NGC 253 are more massive and with larger column densities than those in M 82, as expected from the evolutionary stage of the starbursts in both galaxies.Comment: 32 pages, 4 figures, Published in Ap

    Molecular tracers of PDR-dominated galaxies

    Get PDF
    Photon-dominated regions (PDRs) are powerful molecular line emitters in external galaxies. They are expected in galaxies with high rates of massive star formation due to either starburst (SB) events or starburst coupled with active galactic nuclei (AGN) events. We have explored the PDR chemistry for a range of physical conditions representing a variety of galaxy types. Our main result is a demonstration of the sensitivity of the chemistry to changes in the physical conditions. We adopt crude estimates of relevant physical parameters for several galaxy types and use our models to predict suitable molecular tracers of those conditions. The set of recommended molecular tracers differs from that which we recommended for use in galaxies with embedded massive stars. Thus, molecular observations can in principle be used to distinguish between excitation by starburst and by SB+AGN in distant galaxies. Our recommendations are intended to be useful in preparing Herschel and ALMA proposals to identify sources of excitation in galaxies.Comment: 18 pages, 6 figures, Accepted in Ap

    Tracing high density gas in M 82 and NGC 4038

    Full text link
    We present the first detection of CS in the Antennae galaxies towards the NGC 4038 nucleus, as well as the first detections of two high-J (5-4 and 7-6) CS lines in the center of M 82. The CS(7-6) line in M 82 shows a profile that is surprisingly different to those of other low-J CS transitions we observed. This implies the presence of a separate, denser and warmer molecular gas component. The derived physical properties and the likely location of the CS(7-6) emission suggests an association with the supershell in the centre of M 82.Comment: 10 pages, 3 figures, ApJ Letter - ACCEPTE

    A Census of the High-Density Molecular Gas in M82

    Full text link
    We present a three-pointing study of the molecular gas in the starburst nucleus of M82 based on 190 - 307 GHz spectra obtained with Z-Spec at the Caltech Submillimeter Observatory. We present intensity measurements, detections and upper limits, for 20 transitions, including several new detections of CS, HNC, C2H, H2CO, and CH3CCH lines. We combine our measurements with previously-published measurements at other frequencies for HCN, HNC, CS, C34S, and HCO+ in a multi-species likelihood analysis constraining gas mass, density and temperature, and the species' relative abundances. We find some 1.7 - 2.7 x 10^8 M_sun of gas with n_H2 between 1 - 6 x 10^4 cm^-3 and T > 50 K. While the mass and temperature are comparable to values inferred from mid-J CO transitions, the thermal pressure is a factor of 10 - 20 greater. The molecular interstellar medium is largely fragmented and is subject to ultraviolet irradiation from the star clusters. It is also likely subject to cosmic rays and mechanical energy input from the supernovae, and is warmer on average than the molecular gas in the massive star formation regions in the Milky Way. The typical conditions in the dense gas in M82's central kpc appear unfavorable for further star formation; if any appreciable stellar populations are currently forming, they are likely biased against low mass stars, producing a top-heavy initial mass function.Comment: 15 pages (using emulateapj.cls), 6 figures, Astrophysical Journal, in pres

    Molecular tracers of high mass star-formation in external galaxies

    Full text link
    Hot core molecules should be detectable in external active galaxies out to high redshift. We present here a detailed study of the chemistry of star-forming regions under physical conditions that differ significantly from those likely to be appropriate in the Milky Way Galaxy. We examine, in particular, the trends in molecular abundances as a function of time with respect to changes in the relevant physical parameters. These parameters include metallicity, dust:gas mass ratio, the H2_{2} formation rate, relative initial elemental abundances, the cosmic ray ionization rate, and the temperature of hot cores. These trends indicate how different tracers provide information on the physical conditions and on evolutionary age. We identify hot core tracers for several observed galaxies that are considered to represent spirals, active galaxies, low-metallicity galaxies, and high-redshift galaxies. Even in low-metallicity examples, many potential molecular tracers should be present at levels high enough to allow unresolved detection of active galaxies at high redshift containing large numbers of hot cores.Comment: 11 pages, 8 figures, accepted in Ap
    • …
    corecore