9 research outputs found

    Complex-energy analysis of proton-proton fusion

    Full text link
    An analysis of the astrophysical SS factor of the proton-proton weak capture (p+p→2H+e++Îœe\mathrm{p}+\mathrm{p}\rightarrow {}^2\mathrm{H}+\mathrm{e}^++\nu_{\mathrm{e}}) is performed on a large energy range covering solar-core and early Universe temperatures. The measurement of SS being physically unachievable, its value relies on the theoretical calculation of the matrix element Λ\Lambda. Surprisingly, Λ\Lambda reaches a maximum near 0.13 MeV0.13~\mathrm{MeV} that has been unexplained until now. A model-independent parametrization of Λ\Lambda valid up to about 5 MeV5~\mathrm{MeV} is established on the basis of recent effective-range functions. It provides an insight into the relationship between the maximum of Λ\Lambda and the proton-proton resonance pole at (−140−467 i) keV(-140-467\,\mathrm{i})~\mathrm{keV} from analytic continuation. In addition, this parametrization leads to an accurate evaluation of the derivatives of Λ\Lambda, and hence of SS, in the limit of zero energy.Comment: 13 pages, 9 figures, 43 reference

    Computing on Wheels: A Deep Reinforcement Learning-Based Approach

    Get PDF
    Future generation vehicles equipped with modern technologies will impose unprecedented computational demand due to the wide adoption of compute-intensive services with stringent latency requirements. The computational capacity of the next generation vehicular networks can be enhanced by incorporating vehicular edge or fog computing paradigm. However, the growing popularity and massive adoption of novel services make the edge resources insufficient. A possible solution to overcome this challenge is to employ the onboard computation resources of close vicinity vehicles that are not resource-constrained along with the edge computing resources for enabling tasks offloading service. In this paper, we investigate the problem of task offloading in a practical vehicular environment considering the mobility of the electric vehicles (EVs). We propose a novel offloading paradigm that enables EVs to offload their resource hungry computational tasks to either a roadside unit (RSU) or the nearby mobile EVs, which have no resource restrictions. Hence, we formulate a non-linear problem (NLP) to minimize the energy consumption subject to the network resources. Then, in order to solve the problem and tackle the issue of high mobility of the EVs, we propose a deep reinforcement learning (DRL) based solution to enable task offloading in EVs by finding the best power level for communication, an optimal assisting EV for EV pairing, and the optimal amount of the computation resources required to execute the task. The proposed solution minimizes the overall energy for the system which is pinnacle for EVs while meeting the requirements posed by the offloaded task. Finally, through simulation results, we demonstrate the performance of the proposed approach, which outperforms the baselines in terms of energy per task consumption

    Cache sharing in UAV-enabled cellular network: A deep reinforcement learning-based approach

    Get PDF
    Caching content at base stations has proven effective at reducing transmission delays. This paper investigates the caching problem in a network of highly dynamic cache-enabled Unmanned Aerial Vehicles (UAVs), which serve ground users as aerial base stations. In this scenario, UAVs share their caches to minimize total transmission delays for requested content while simultaneously adjusting their locations. To address this challenge, we formulate a non-convex optimization problem that jointly controls UAV mobility, user association, and content caching to minimize transmission delay time. Considering the highly dynamic environment where traditional optimization approaches fall short, we propose a deep reinforcement learning (RL)-based algorithm. Specifically, we employ the actor-critic-based Deep Deterministic Policy Gradient (DDPG) algorithm to solve the optimization problem effectively. We conducted extensive simulations with respect to different cache sizes and the number of associated users with their home UAVs and compared our proposed algorithm with two baselines. Our proposed solution has demonstrated noteworthy enhancements over the two baseline approaches across various scenarios, including diverse cache sizes and varying numbers of users associated with their respective home UAVs

    API Security in Large Enterprises:Leveraging Machine Learning for Anomaly Detection

    No full text

    Computing on wheels: A deep reinforcement learning-based approach

    No full text
    Future generation vehicles equipped with modern technologies will impose unprecedented computational demand due to the wide adoption of compute-intensive services with stringent latency requirements. The computational capacity of the next generation vehicular networks can be enhanced by incorporating vehicular edge or fog computing paradigm. However, the growing popularity and massive adoption of novel services make the edge resources insufficient. A possible solution to overcome this challenge is to employ the onboard computation resources of close vicinity vehicles that are not resource-constrained along with the edge computing resources for enabling tasks offloading service. In this paper, we investigate the problem of task offloading in a practical vehicular environment considering the mobility of the electric vehicles (EVs). We propose a novel offloading paradigm that enables EVs to offload their resource hungry computational tasks to either a roadside unit (RSU) or the nearby mobile EVs, which have no resource restrictions. Hence, we formulate a non-linear problem (NLP) to minimize the energy consumption subject to the network resources. Then, in order to solve the problem and tackle the issue of high mobility of the EVs, we propose a deep reinforcement learning (DRL) based solution to enable task offloading in EVs by finding the best power level for communication, an optimal assisting EV for EV pairing, and the optimal amount of the computation resources required to execute the task. The proposed solution minimizes the overall energy for the system which is pinnacle for EVs while meeting the requirements posed by the offloaded task. Finally, through simulation results, we demonstrate the performance of the proposed approach, which outperforms the baselines in terms of energy per task consumption

    Computing on Wheels: A Deep Reinforcement Learning-Based Approach

    Get PDF
    Future generation vehicles equipped with modern technologies will impose unprecedented computational demand due to the wide adoption of compute-intensive services with stringent latency requirements. The computational capacity of the next generation vehicular networks can be enhanced by incorporating vehicular edge or fog computing paradigm. However, the growing popularity and massive adoption of novel services make the edge resources insufficient. A possible solution to overcome this challenge is to employ the onboard computation resources of close vicinity vehicles that are not resource-constrained along with the edge computing resources for enabling tasks offloading service. In this paper, we investigate the problem of task offloading in a practical vehicular environment considering the mobility of the electric vehicles (EVs). We propose a novel offloading paradigm that enables EVs to offload their resource hungry computational tasks to either a roadside unit (RSU) or the nearby mobile EVs, which have no resource restrictions. Hence, we formulate a non-linear problem (NLP) to minimize the energy consumption subject to the network resources. Then, in order to solve the problem and tackle the issue of high mobility of the EVs, we propose a deep reinforcement learning (DRL) based solution to enable task offloading in EVs by finding the best power level for communication, an optimal assisting EV for EV pairing, and the optimal amount of the computation resources required to execute the task. The proposed solution minimizes the overall energy for the system which is pinnacle for EVs while meeting the requirements posed by the offloaded task. Finally, through simulation results, we demonstrate the performance of the proposed approach, which outperforms the baselines in terms of energy per task consumption

    Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions

    No full text
    In vivo cell lineage-tracing studies in the vertebrate retina have revealed that the sizes and cellular compositions of retinal clones are highly variable. It has been challenging to ascertain whether this variability reflects distinct but reproducible lineages among many different retinal progenitor cells (RPCs) or is the product of stochastic fate decisions operating within a population of more equivalent RPCs. To begin to distinguish these possibilities, we developed a method for long-term videomicroscopy to follow the lineages of rat perinatal RPCs cultured at clonal density. In such cultures, cell-cell interactions between two different clones are eliminated and the extracellular environment is kept constant, allowing us to study the cell-intrinsic potential of a given RPC. Quantitative analysis of the reconstructed lineages showed that the mode of division of RPCs is strikingly consistent with a simple stochastic pattern of behavior in which the decision to multiply or differentiate is set by fixed probabilities. The variability seen in the composition and order of cell type genesis within clones is well described by assuming that each of the four different retinal cell types generated at this stage is chosen stochastically by differentiating neurons, with relative probabilities of each type set by their abundance in the mature retina. Although a few of the many possible combinations of cell types within clones occur at frequencies that are incompatible with a fully stochastic model, our results support the notion that stochasticity has a major role during retinal development and therefore possibly in other parts of the central nervous system
    corecore