933 research outputs found

    Simple robust control laws for robot manipulators. Part 2: Adaptive case

    Get PDF
    A new class of asymptotically stable adaptive control laws is introduced for application to the robotic manipulator. Unlike most applications of adaptive control theory to robotic manipulators, this analysis addresses the nonlinear dynamics directly without approximation, linearization, or ad hoc assumptions, and utilizes a parameterization based on physical (time-invariant) quantities. This approach is made possible by using energy-like Lyapunov functions which retain the nonlinear character and structure of the dynamics, rather than simple quadratic forms which are ubiquitous to the adaptive control literature, and which have bound the theory tightly to linear systems with unknown parameters. It is a unique feature of these results that the adaptive forms arise by straightforward certainty equivalence adaptation of their nonadaptive counterparts found in the companion to this paper (i.e., by replacing unknown quantities by their estimates) and that this simple approach leads to asymptotically stable closed-loop adaptive systems. Furthermore, it is emphasized that this approach does not require convergence of the parameter estimates (i.e., via persistent excitation), invertibility of the mass matrix estimate, or measurement of the joint accelerations

    Simple robust control laws for robot manipulators. Part 1: Non-adaptive case

    Get PDF
    A new class of exponentially stabilizing control laws for joint level control of robot arms is introduced. It has been recently recognized that the nonlinear dynamics associated with robotic manipulators have certain inherent passivity properties. More specifically, the derivation of the robotic dynamic equations from the Hamilton's principle gives rise to natural Lyapunov functions for control design based on total energy considerations. Through a slight modification of the energy Lyapunov function and the use of a convenient lemma to handle third order terms in the Lyapunov function derivatives, closed loop exponential stability for both the set point and tracking control problem is demonstrated. The exponential convergence property also leads to robustness with respect to frictions, bounded modeling errors and instrument noise. In one new design, the nonlinear terms are decoupled from real-time measurements which completely removes the requirement for on-line computation of nonlinear terms in the controller implementation. In general, the new class of control laws offers alternatives to the more conventional computed torque method, providing tradeoffs between robustness, computation and convergence properties. Furthermore, these control laws have the unique feature that they can be adapted in a very simple fashion to achieve asymptotically stable adaptive control

    Reduced-Order Kalman Filtering for Processing Relative Measurements

    Get PDF
    A study in Kalman-filter theory has led to a method of processing relative measurements to estimate the current state of a physical system, using less computation than has previously been thought necessary. As used here, relative measurements signifies measurements that yield information on the relationship between a later and an earlier state of the system. An important example of relative measurements arises in computer vision: Information on relative motion is extracted by comparing images taken at two different times. Relative measurements do not directly fit into standard Kalman filter theory, in which measurements are restricted to those indicative of only the current state of the system. One approach heretofore followed in utilizing relative measurements in Kalman filtering, denoted state augmentation, involves augmenting the state of the system at the earlier of two time instants and then propagating the state to the later time instant.While state augmentation is conceptually simple, it can also be computationally prohibitive because it doubles the number of states in the Kalman filter. When processing a relative measurement, if one were to follow the state-augmentation approach as practiced heretofore, one would find it necessary to propagate the full augmented state Kalman filter from the earlier time to the later time and then select out the reduced-order components. The main result of the study reported here is proof of a property called reduced-order equivalence (ROE). The main consequence of ROE is that it is not necessary to augment with the full state, but, rather, only the portion of the state that is explicitly used in the partial relative measurement. In other words, it suffices to select the reduced-order components first and then propagate the partial augmented state Kalman filter from the earlier time to the later time; the amount of computation needed to do this can be substantially less than that needed for propagating the full augmented Kalman state filter

    Combining Multiple Gyroscope Outputs for Increased Accuracy

    Get PDF
    A proposed method of processing the outputs of multiple gyroscopes to increase the accuracy of rate (that is, angular-velocity) readings has been developed theoretically and demonstrated by computer simulation. Although the method is applicable, in principle, to any gyroscopes, it is intended especially for application to gyroscopes that are parts of microelectromechanical systems (MEMS). The method is based on the concept that the collective performance of multiple, relatively inexpensive, nominally identical devices can be better than that of one of the devices considered by itself. The method would make it possible to synthesize the readings of a single, more accurate gyroscope (a virtual gyroscope) from the outputs of a large number of microscopic gyroscopes fabricated together on a single MEMS chip. The big advantage would be that the combination of the MEMS gyroscope array and the processing circuitry needed to implement the method would be smaller, lighter in weight, and less power-hungry, relative to a conventional gyroscope of equal accuracy. The method (see figure) is one of combining and filtering the digitized outputs of multiple gyroscopes to obtain minimum-variance estimates of rate. In the combining-and-filtering operations, measurement data from the gyroscopes would be weighted and smoothed with respect to each other according to the gain matrix of a minimum- variance filter. According to Kalman-filter theory, the gain matrix of the minimum-variance filter is uniquely specified by the filter covariance, which propagates according to a matrix Riccati equation. The present method incorporates an exact analytical solution of this equation

    Extended Horizon Liftings for Periodic Gain Adjustments in Control Systems, and for Equalization of Communication Channels

    Get PDF
    Periodic gain adjustment in plants of irreducible order, n, or for equalization of communications channels is effected in such a way that the plant (system) appears to be minimum phase by choosing a horizon time N greater then n of liftings in periodic input and output windows Pu and Py, respectively, where N is an integer chosen to define the extent (length) of each of the windows Pu and Py, and n is the order of an irreducible input/output plant. The plant may be an electrical, mechanical or chemical system, in which case output tracking (OT) is carried out for feedback control or a communication channel, in which case input tracking (IT) is carried out. Conditions for OT are distinct from IT in terms of zero annihilation, namely for OT and of IT, where the OT conditions are intended for gain adjustments in the control system, and IT conditions are intended for equalization for communication channels

    Extended horizon lifting for periodic gain adjustment in control systems, and for equalization of communication channels

    Get PDF
    Periodic gain adjustment in plants of irreducible order, n, or for equalization of communications channels is effected in such a way that the plant (system) appears to be minimum phase by choosing a horizon time N is greater than n of liftings in periodic input and output windows rho sub u and rho sub y, respectively, where N is an integer chosen to define the extent (length) of each of the windows rho sub u and rho sub y, and n is the order of an irreducible input/output plant. The plant may be an electrical, mechanical, or chemical system, in which case output tracking (OT) is carried out for feedback control or a communication channel, in which case input tracking (IT) is performed. Conditions for OT are distinct from IT in terms of zero annihilation, namely H(sub s)H(sub s)(sup +) = I for OT and H(sub s)H(sub s)(sup +) = I of IT, where the OT conditions are intended for gain adjustments in the control system, and IT conditions are intended for equalization for communication channels

    A systematic review on health resilience to economic crises

    Get PDF
    Background The health effects of recent economic crises differ markedly by population group. The objective of this systematic review is to examine evidence from longitudinal studies on factors influencing resilience for any health outcome or health behaviour among the general population living in countries exposed to financial crises. Methods We systematically reviewed studies from six electronic databases (EMBASE, Global Health, MEDLINE, PsycINFO, Scopus, Web of Science) which used quantitative longitudinal study designs and included: (i) exposure to an economic crisis; (ii) changes in health outcomes/behaviours over time; (iii) statistical tests of associations of health risk and/or protective factors with health outcomes/behaviours. The quality of the selected studies was appraised using the Quality Assessment Tool for Quantitative Studies. PRISMA reporting guidelines were followed. Results From 14,584 retrieved records, 22 studies met the eligibility criteria. These studies were conducted across 10 countries in Asia, Europe and North America over the past two decades. Ten socio-demographic factors that increased or protected against health risk were identified: gender, age, education, marital status, household size, employment/occupation, income/ financial constraints, personal beliefs, health status, area of residence, and social relations. These studies addressed physical health, mortality, suicide and suicide attempts, mental health, and health behaviours. Women’s mental health appeared more susceptible to crises than men’s. Lower income levels were associated with greater increases in cardiovascular disease, mortality and worse mental health. Employment status was associated with changes in mental health. Associations with age, marital status, and education were less consistent, although higher education was associated with healthier behaviours. Conclusions Despite widespread rhetoric about the importance of resilience, there was a dearth of studies which operationalised resilience factors. Future conceptual and empirical research is needed to develop the epidemiology of resilience

    Covariance Analysis Tool (G-CAT) for Computing Ascent, Descent, and Landing Errors

    Get PDF
    G-CAT is a covariance analysis tool that enables fast and accurate computation of error ellipses for descent, landing, ascent, and rendezvous scenarios, and quantifies knowledge error contributions needed for error budgeting purposes. Because GCAT supports hardware/system trade studies in spacecraft and mission design, it is useful in both early and late mission/ proposal phases where Monte Carlo simulation capability is not mature, Monte Carlo simulation takes too long to run, and/or there is a need to perform multiple parametric system design trades that would require an unwieldy number of Monte Carlo runs. G-CAT is formulated as a variable-order square-root linearized Kalman filter (LKF), typically using over 120 filter states. An important property of G-CAT is that it is based on a 6-DOF (degrees of freedom) formulation that completely captures the combined effects of both attitude and translation errors on the propagated trajectories. This ensures its accuracy for guidance, navigation, and control (GN&C) analysis. G-CAT provides the desired fast turnaround analysis needed for error budgeting in support of mission concept formulations, design trade studies, and proposal development efforts. The main usefulness of a covariance analysis tool such as G-CAT is its ability to calculate the performance envelope directly from a single run. This is in sharp contrast to running thousands of simulations to obtain similar information using Monte Carlo methods. It does this by propagating the "statistics" of the overall design, rather than simulating individual trajectories. G-CAT supports applications to lunar, planetary, and small body missions. It characterizes onboard knowledge propagation errors associated with inertial measurement unit (IMU) errors (gyro and accelerometer), gravity errors/dispersions (spherical harmonics, masscons), and radar errors (multiple altimeter beams, multiple Doppler velocimeter beams). G-CAT is a standalone MATLAB- based tool intended to run on any engineer's desktop computer

    Autonomous frequency domain identification: Theory and experiment

    Get PDF
    The analysis, design, and on-orbit tuning of robust controllers require more information about the plant than simply a nominal estimate of the plant transfer function. Information is also required concerning the uncertainty in the nominal estimate, or more generally, the identification of a model set within which the true plant is known to lie. The identification methodology that was developed and experimentally demonstrated makes use of a simple but useful characterization of the model uncertainty based on the output error. This is a characterization of the additive uncertainty in the plant model, which has found considerable use in many robust control analysis and synthesis techniques. The identification process is initiated by a stochastic input u which is applied to the plant p giving rise to the output. Spectral estimation (h = P sub uy/P sub uu) is used as an estimate of p and the model order is estimated using the produce moment matrix (PMM) method. A parametric model unit direction vector p is then determined by curve fitting the spectral estimate to a rational transfer function. The additive uncertainty delta sub m = p - unit direction vector p is then estimated by the cross spectral estimate delta = P sub ue/P sub uu where e = y - unit direction vectory y is the output error, and unit direction vector y = unit direction vector pu is the computed output of the parametric model subjected to the actual input u. The experimental results demonstrate the curve fitting algorithm produces the reduced-order plant model which minimizes the additive uncertainty. The nominal transfer function estimate unit direction vector p and the estimate delta of the additive uncertainty delta sub m are subsequently available to be used for optimization of robust controller performance and stability
    • …
    corecore