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1571 ABSTRACT 

Periodic gain adjustment in plants of irreducible order, n, or 
for equalization of communications channels is effected in 
such a way that the plant (system) appears to be minimum 
phase by choosing a horizon time N>n of liftings in periodic 
input and output windows p, and py, respectively, where N 
is an integer chosen to define the extent (length) of each of 
the windows p, and py, and n is the order of an irreducible 
input/output plant. The plant may be an electrical, mechani- 
cal or chemical system, in which case output tracking (OT) 
is carried out for feedback control or a communication 
channel, in which case input tracking (IT) is carried out. 
Conditions for OT are distinct from IT in terms of zero 
annihilation, namely H$+,=I for OT and H,+H,=I of IT, 
where the OT conditions are intended for gain adjustments 
in the control system, and IT conditions are intended for 
equalization for communication channels. 

6 Claims, 6 Drawing Sheets 
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EXTENDED HORIZON LIFTINGS FOR 
PERIODIC GAIN ADJUSTMENTS IN 

CONTROL SYSTEMS, AND FOR 
EQUALIZATION OF COMMUNICATION 

CHANNELS 

ORIGIN OF INVENTION 

stable plant inverse is often desired but not possible due to 
nonminimum-phase restrictions. 

In a paper by R. Lozano-Leal, “Robust adaptive regula- 
tion without persistent excitation,” IEEE Trans. Automatic 

5 Control, Vol. 34, pp. 1260-1267, December 1989, a multi- 
rate sampling method is presented which allows stable 
inversion of any linear time-invariant finite-order plant 
signal. Not surprisingly Lozano’s lifting has also been 
applied to developing stable adaptive control algorithms for 

“SingularlY-free adaptive pole placement using periodic 
controllers,” IEEE Trans. Automatic Control, Vol. 38, pp. 
104-108, January 1993. 

Lifting in this invention is an extension of the prior art 
15 represented by Bayard, supra, and Lozano-Leal, supra, to 

The invention relates to providing periodic gain adjust- “extended horizons,” i.e., to extended periodic windows 
merit in control design as a way of modulating control over which liftings (samples) are taken in adaptive control- 
energy to higher frequencies and making the harmonics add lers of the type described by LOZano et al., supra, for 
in such a way that a nonminimum-phase system appears to example. Extended horizon liftings are crucial for control 
be minimum phase using a technique based on the notion of 20 gain reduction in order to allow practical implementations of 
a mathematical “lifting” in which a serial-to-parallel con- control in nonminimum-phase systems. The distinction 
version is performed O n  the control input and output signals, between extended horizon liftings of the present invention 
and mappings are considered between the vectorized quan- and the Prior art Will r~ow be d ~ ~ r i b e d .  
tities. This lifting technique is also applicable in communi- Since Lozano-Leal’s liftings are distinct from the present 
cations for equalization of a nonminimum phase channel. 25 invention in that it utilizes a horizon size of N=2n, where n 

is the plant order and N is the length of the window for the 
liftings, and the number of elements in the system input 
equals those in the system output (Le., ou=oy), it will be BACKGROUND OF THE INVENTION 

In the prior art, nonminimum-phase systems could only denoted as the “2n-lifting,” while in the present invention 
be controlled by using low bandwidth, sluggish controllers. 30 N>n and preferably N22n-1 in a large class of systems in 
In layman’s terms, nonminimum-phase systems move in a which oU>oy for output tracking (mapping), such as in 
direction initially opposite to the direction they are pushed. feedback control systems, and ou<or for input tracking, such 
Such systems arise when, for example, one attempts to as in communications systems, and which enjoy the same 
dampen vibrations on a flexible structure in optical instru- zero annihilation properties as N=2n. Unlike the special case 
ments by acting at a location remote from the flexible 35 of Lozano-Leal’s and other prior art liftings, the present 
structure in the case of a “noncolocated” control system. invention allows the use of all extended horizon liftings with 

Nonminimum-phase systems arise in many aerospace N greater than n and preferably equal to or greater than 211-1 
applications of noncolocated control, such as spacecraft with ou’‘~ Or Output tracking (OT) and OU<OY for input 
slewing, instrument pointing/tracking, flexible robotics, 4o tracking (IT). An important consequence is that such 
acoustic systems, chemical process control systems, extended horizon liftings lead to plant-inverse controllers 

time equalization of nonminimum-phase communication problem associated with Lozano-Leal’s lifting, where N=2n 
systems. object of this invention is to achieve high and ou=oy, which has prevented its use in many applications 
pedormance control for the class of nonminimum-phase 45 of practical interest that the present invention will reach. To 
systems that encompasses these and other applications illustrate the present invention, a simulation example is 
which are referred to generically as “plants.” provided below in which the peak control requirement is 

reduced by four orders of magnitude using extended horizon A Zero Annihilation Periodic (ZAP) control law was liftings. introduced by the present inventor, David S. Bayard, in 
publications titled “Globally stable adaptive periodic con- 5o It will also be shown that as a dual result, a related class 
trol;> Jet ~ ~ ~ ~ ~ l ~ i ~ ~  Laboratory, Internal D~~~~~~~ JPL of extended horizon liftings enables equalization of non- 
D-9448, February 3, 1992 and -zero annihilation minimum-phase channels in communication systems. This 
for direct adaptive control of nonminimum-phase systems,~9 overcomes the standard problem of inverting the channel in 
proc. Seventh yale Workshop on Adaptive and ~~~i~~ a stable fashion. In this invention, the extended horizon 
Systems, Yale University, May 1992, for controlling non- 55 Property allows Channel inversion by least squares estima- 

The general ZAP approach is based on the notion of a As background information, consider a plant inputloutput 
mathematical “lifting” performed on the plant input and 
output signals with mapping between the vectorized input 

A(z-’)yl = B(z-’)u, (1) 
and output quantities. 60 

A key property of the ZAP liftings which makes them so 
useful is that the transmission zeros of the lifted and vec- 
torized plant input signal are annihilated (Le., placed to the 
origin). This zero-annihilation (ZA) property allows the where the polynomials A and B are assumed to be relatively 
vectorized plant signals to be stably inverted using standard 65 prime. It is assumed that b,#O, so that the polynomial B can 
control methods. The result is important to many areas of be factored uniquely into the form B(z-’)=z-db,B(z-’) 
control, communications, and signal processing where a where B(z-’) is a monic polynomial and d=l is the plant 

The invention described herein was made in the perfor- 

provisions of Public Law 96-517 (35 USC 202) in which the 
contractor has elected not to retain title. 

TECHNICAL FIELD 

mance of work under a NASA contract, and is subject to the 10 nonminimum phase systems. See R. et a l . 9  

pact disk controllers, floppy disk controllers and even real- with reduced gains. This Overcomes a 

minimum-phase systems using stable inversion of the plant, tion, which provides smoothing in the case of noise. 

model, 

A(z-’) = 1 + t a,z-’, B(zr’) = 2 b p  
t-1 1=1 
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delay. The choice d=l is for convenience only and is not a It is noted that since A, is lower triangular with zeros on the 
fundamental restriction. In the case that d+l, all subsequent diagonal, the quantity (I-A,) is always invertible. Hence the 
expressions can be appropriately modified without loss of quantities in Eq. (5 )  always exist. 
generality. Polynomial A is divided into B to give impulse response 

Choose some horizon lime N>n. The system of Eq. (1 )  is 5 sequence {hi}, 
iterated to give the following system of linear equations, 

-- B(z-9 - h,z-, (6) 
Y(k)=AI Y(k)+A,Y(k-l)+B, U(k)+B,U(k -1) (2) A(2-I) i=l 

T 

* 

where. 

: U(k)=  Y(k)= 

UkW+N-i 

r 
YW+l 

YLNt2 

’ 

YkNtN . 

The Markov parameter sequence {hi} is not assumed to be 
io convergent (i.e., the system may be unstable). Using the 

Toeplitz structure of A, and B, and relation, (Eq. (6)), it can 
be shown that the matrix H in Eqs. (4) and (5)  can bc written 
in terms of the impulse response parameters, 

(3) I 
I 15 

H =  
n 

(7) 

. . . 3 b21 
Example 1 Let n=3 and N=4. Then Eq. (2) becomes, In accordance with the present invention, an improved 

method for providing periodic gain adjustment in plants of 
irreducible order, such as for control of electrical, mechani- 
cal or chemical systems or for equalization of cornmunica- 
tion channels, comprises the choosing of a horizon time N x  
of liftings in periodic input and output signal windows p, 
and py. respectively, where N is an integer chosen to define 

is the order of the irreducible input/output plant model given 
by an equation of the form 

30 . 

r w the extent (length) of each of the windows p, and py, and n Y4k-3 

Y4k-2 35 

: I =  Y4k+i 

Y 4 k t 2  

Y 4 k ~ 3  

Y 4 k A  

0 -ne - a 2  -ai I 0 0 

0 0 0 - a 3  I - a 2  - a i  0 0 
0 0 0 0 I - a 3  -2 -a1 0 A(z-I)= 1 + ,? a , t l ;  B ( t ’ )  = ,; b , t  

A(z-’)y, = B(z-’)u, 

40 t=l I=l 
Y 4 C 3  

h Y 4 k + 4  

r 
U4k-1 

U4k-3 

0 0 0 0 1 6 3  bz bi 0 
0 0 0 0 I 0 b 3  b 2  b i  

u4k+1 

U4k12 

U4ki3  

where polynomials A and B are relatively prime, such that 
the horizon time for liftings have a total length N=m+l+p+ 
q+2n-1, and in which the number of elements ou in the 

45 liftings taken from the input signal is greater than the 
number of elements oy in the liftings taken from the output 
signal for output tracking in control systems and vice versa 
(o,<a,) for input tracking in communication systems. The 
extended horizon liftings for output tracking over a selected 

50 input signal window p, and a selected output signal window 
py are of the form 

N It is convenient to combine terms involving Y(k) in eq. (2) 

“Block multirate input-output model for sampled-data con- 55 - -h- , - - - - ,n  
trol systems,” IEEE Trans. Automatic Control, Vol. 35, No. p.=[O ,..., 0, 1 ,..., 1, p. 1,1, ..., 1, 0 , . . . ,  0, 0 ,..., 01 
9, pp. 1085-1088, September 1990. 

Albcrtos’ Lifting: m 1 p q 1 1 - 1  n 
n n h n n -  

p,= [O,. . . ,o, 0,. . . ,o, p, 0,. . . ,0, 0,. . . ,o, 1.1,. . . , I ]  

F 
A 

\ 
and rearrange to give the following lifting of P. Albcrtos, m [ P  n q n - 1  

(4) 6o Y(k)=AY(k-l)+HU(k)+BU(k-l) 

where m, 1, p, n, q, and n-1 are elements of the lifting, and 
m 2 0  and ll-0 arc arbitrary, q=O, p E R“ is an arbitrary (or 
null) 0-1 vector chosen identically in both p, and py and n>O 

(5b) 65 is the order of the irreducible plant. If the system is obtained 
by zero-order hold digitization of a continuous-time plant, 

(5~) the integer q20  can be chosen arbitrarily. Since there arc 
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m-t-1 zeros on the left of py and only m zeros on the left of 
p,, the number of elements ci, is greater than 0, for output 
tracking. For input tracking, the extended horizon liftings 
are of the same general form, but now there are m+l zeros 
on the left of p,, and only m zeros on the left of py so that 
the number of elements ci, is less than o,,. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 graphically depicts partial horizon vectors U, and 
Y, using windows p, and py. 

FIG. 2 is a block diagram of a generalized lifting system 
model G(p,,p,) defined by Equation 19 applicable to control 
systems in general. 

FIG. 3 illustrates graphically the determination of a small 
matrix H, from input and output signal liftings in respective 
windows p, and py. 

FIG. 4 is a block diagram of a generalized lifting system 
model under zero annihilation conditions BSUT=O and 
A(SyC)T=O defined by Eqs. (27) and (28). 

FIG. 5 is a block diagram of a zero annihilation periodic 
(ZAP) control law having a closed-loop system arising from 
the output tracking of extended horizon liftings of Equations 
(35) and (36). 

FIG. 6 is a pole-zero plot of a 12-state nonminimum phase 
plant with a sampling interval T4.025sec in which poles are 
represented by "X' and zeros by "0." 

FIG. 7 is a graph of open-loop output response of the plant 
in FIG. 6 to an initial condition. 

FIGS. 8a and 8b are graphs of respective output and input 
closed-loop response of the plant in FIG. 6 using deadbeat 
control with Lozano's 2n-lifting (cr,=ciy) with a vibration 
damping objective. 

FIGS. 9a and 9b are graphs of respective output and input 
response using ZAP control of FIG. B with an extended 
horizon input lifting p, defined by m=O, 1=40, p=O, n=12, 
q=O, N=63. In this case 0,=52 and ci,=12, so that o,>o,. 

FIG. 10 illustrates application of the present invention to 
communications for equalizing a nonminimum phase chan- 
nel. 

DETAILED DESCRIPTION OF THE 
INVENTION 

A class of liftings (N>n) will first be defined by general- 
izing the lifting of Albertos (Eq. (4)). For this purpose, it will 
be useful to construct the "small" vector Y,(k) from Y(k) as 
follows, 

Y,(k$S,Y (k)eRay 

where SY~RmFN is a selection matrix which sifts out 
elements of Y(k) for inclusion into Y,(k). 

The matrix S ,  is most conveniently constructed from a 
@-1 vector py. For example, if py=[l,l,O,O] then Y,(k) E R2 
contains the first two elements of Y(k) E R4 and the selection 
matrix is given as, 

A systematic method to construct S ,  is defined as follows: 
form a diagonal matrix from the entries of vector py, and 
then remove all rows made up entirely of Os. This construc- 
tion defines the mapping W:RN+R"fN for which one can 
write S,=W(p,). Since py can be uniquely reconstructed by 

6 
a logical "or" over the columns of S,, the mapping W is 
one-to-one. 

Using the above notation, the following "small" vectors 
are defined, 

5 

(sa) 

(W 

( 8c) 

where pjjand p, are specified 0-1 window vectors, and pyc 
is defined as the 0-1 complement of py. The vector Y,"(k) in 
Eq. (8c) is denoted as the complementary output since it 

15 comprises all elements of the vector Y(k) which are not 
included in Y,(k). 

A formula to reconstruct Y(k) from Y,(k) and Ys'(k) is 
now derived. First, it is to be noted that the quantity 
S,,=[Syl, (Sy')T]T is a permutation matrix. Hence its inverse 
is its transpose, Le., sy%,,=I, which upon expanding gives 

A A Y,(k)=S,Y Q; sy=w (Py)ER""" 

U,(k)&,U&); S , = W ( ~ , , ) E R " ~ ~  A 

Y;(k)=S,'Y(k); A S,~W(P,')ER~~-Y'+~ 
10 

- 

20 . 

sy~Sy+(Sy~)=s,'=I (9) 

Multiplying both sides of Eq. (9) on the right by Y(k) gives 
25 the desired formula, 

Y c k ~ ~ Y , c k ) + c s , ' , ~ Y ; ( k )  (10) 

Example 2. FIG. 1 graphically depicts partial horizon vec- 
30 tors Us and Y, for the limited liftings case of n=3 and N=6, 

as determined by window vectors p,=[O,l,l,l,O,O] and p,,= 
[0,0,1,1,1,0]. In this case, p,"=[l,l, 0,0,0,1] and one can 
compute, 

35 

S,=W(p,)= 0 0 1 0  0 0 ; [: 1 : 1 : :I 
[: ,o 1 : T :I 

[ o  0 0 0 0 1 ]  

40 
S,=W(p,)= 0 0 0 1 0 0 

1 0 0 0 0 0  

S,C=W(p$)= 0 1 0 0 0 0 
45 

In the present invention, a new family of extended liftings 
(NS2n-lj will be defined using the notation developed 

50 above for Albertos' N-lifting in Eq. (4). As a key step, it will 
be assumed that U(k) is chosen as zero outside the window 
defined by p,. Mathematically this can be written as, 

(I-S,3S,)U(k)=O (11) 

Consider the following nonminimal state-space realization 
of Albertos' N-lifting Eq. (4) determined by using the small 
vectors in Eqs. (8) and identity Eq. ( l l ) ,  

55 

Substivdting for the state in the output Eq. (13) gives the 
alternative output equation, 



5,557,5 11 
7 8 

-continued 
(14) N - YAk) = 1 - y  S@S“l Us(k-  1) ] +SYHSuTUs(k) [ 

y(k - 

Py’[lJ.. . . All 
For analysis purposes, it is convenient to transform the 
open-loop plant using the similarity transformation T where, 

(15) 

The 2n-lifting of Lozano-Leal, supra, is equivalent to the 
specific choice of periodic windows of horizon length N=2n 
as shown in Eq. (21), which is a special case also to bc 
excluded from the present invention. 

N (21) 10 - 
*- 

pu= [O,l,l,. . . ,1, 0,. . . ,01 

(16) n n - 1  

n- 1 A (17) 15 
SIC = W(PY’) n -- 

It can be verified that transformation T is square and py=[0,O,.. ,o, 1.1.. ..,11 
invertible. Furthermore, T is in the form of a permutation 
matrix which reorders the state such that the components Of 
Y, appear first, and the remaining elements follow in the 2o there are a total of 2N+’ possihe generalized liftings over a 
specified order. Since T is a permutation matrix, the inverse horizon of length N. Aside from the liftings of Eqs. (20) and 
ofT is given simply by its transpose (cf., Barnett Matrices: (21), it appears that none of the other possible generalized 
Methods and Applications, Clarendon press, Oxford, liftings have been investigated in the literature. It Will now 
England, 1990, pp. 374), Le., be shown that many of the other possible generalized liftings 

25 have very useful properties, particularly those of N>2n-1. 

Focus will now be on those liftings for which the trans- 
mission zeros Of the (squared down) lifted system lie at the 
origin. For notational convenience, we define the “small” 

Since each choice of p and p gives rise to a unique lifting, 

7-’=T7=[ CI,MT] (18) Zero Annihilation 

Transforming the open-loop dynamics of Eq. (12) by the 
similarity transformation ofEqs. (15) and (16), gives rise to 
a very useful representation denoted as the Generalized 30 matrix Hs by, 
Lifting System Model, H&HSuT (22) 

Genedzed  Lifting System Model, G(p,,p,) The quantity H, appears in many expressions and will play 
(19) 35 an important role in subsequent proofs. The matrix H, can be 

obtained directly from p, and py by writing p, along the top 
of H, and py .along the side of H. This arrangement is 
depicted graphically in FIG. 3. The matrix H, is then the 
submatrix defined by the elements of H having 1’s along 
both borders. Two properties of interest concerning H, are, 

S)AS? Sd (SyC)T SyBSuT 

SyCASyT SycA (SYc)? SycBSuT 

0 0 0 

40 Output Tracking (OT) Condition: 

Ha,’=I (23) 

Input Tracking (IT) Condition: 

H,’ H>=I (24) 
It is noted that the generalized lifting G(p,, p,) of horizon 45 

length N<n is defined uniquely by the choice of selection 
windows pu and & 3  from which the matrices s ~ y  s~,s/ are 
calculated. The generalized lifting system model of&. (19) 
is depicted in the block diagram Of FIG. 2. It is Seen that Y, 
and y.: form 

where I is the identity matrix and the superscript t denotes 

IT conditions are satisfied if H, is square and invertible. The 
coup1ed subsystems which are driven by 50 OT condition is intended for gain adjustments in control 

the Moore-Penrose inverse. It is noted that both the OT and 

a common input U,. It is also noted that the transmission 
zeros of the transfcr function from U,(k) to YJk) are affected 
by the choice of windows P, and Py. This is a feature 
which will be used to advantage in applications of the 
present invention. 

results. For example, Albertos’ lifting in Eq. (4), taken from 
the paper of Albcrtos, supra, is equivalent to a choice of 
periodic windows (horizon length N) as shown in Eq. (20) 
for input and output liftings without regard to the plant order 60 
which should a priori be excluded for consideration in 
applications of the present invention. 

systems, and the IT condition is intended for equalization of 
commun~cat~on channels. 

The property of placing transmission zeros of the lifted 
plant to the origin is characterized in the ~o~lowing: 

Lemma 1 (Zero Annihilation) Assume that windows p, 55 
The lifting G ( p u ,  p,) generalizes a number of existing and py satisfy, Zero Annihilation (ZA) Conditions: 

BS,’=O 

A(S,’)*=O 

(25) 

(26) 

where, 

N (20) S,=W(p,), Sy=W(Py), SyC=W(pyc) 

65 Then, 
(i) the generalized lifting of Eq. (19) has a simplified 

representation, 
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(27) 

(28) 

Y,(k)~,AS,7Y,(k-l)+H,U,(k), and 

Y~(k)=s,CAS,l’Y,(k-l)+S,CHS,’Ll,(k ) 

Lemma 1 can be simply understood by comparing the block 
diagram of FIG. 3 with FIG. 4 and noting all of the blocks 
that have vanished under the ZA conditions. It is seen that 
Y,‘ no longer couples into the Y, subsystem. Furthermore, 

of the Y,‘ subsystem are at the origin. Most importantly, 
there is now only one forward Path from u, to y,. Clearly 
something drastic has happened to the system zeros. Rigor- 
ously, if H, is square invertible, result (iii) of Lemma 1 states 

to y,(k) have been Placed to the origin ( i G  m i h i -  
lated). If H, is not square but the OT condition holds, result 

Proof: Results (i) and (ii) follow by substituting the ZA 15 (iv) of Lemma 1 states that the zeros the lifted plant “squared 
down” by a precompensator H,’ are annihilated. 

as illustrated in FIG. 4, and 

dynamics. 
(ii) y,” is unobservab1e from ys and has (deadbeat) the y,’ subsystem has become deadbeat i.e,, all of the poles 

Furthermore, 
(iii) if H, in Eq. (23) is square and invertible, then the 

transmission zeros of the lifted transfer function in Eq. (19) 
from Us to Y, are annihilated &e., lie at the origin), and 

transmission zeros of the “squared down” lifted transfer 
function (19) from v (where u,=H,’v) to y, are 
annihilated. 

conditions Eqs. (25) and (26) into Eq. (19) , to give, 

10 
(iv) if the OT condition Eq. (24) is satisfied then the that the transmission of the transfer function from 

Extended Horizon Liftings 
The result of using extended horizons for the liftings 

Ysc(k) =Ap Y,C(k- 1) +BpU$(k) introduces a new class of liftings which satisfy the condi- 
tions of Lemma 1. 

Theorem 1 A class of generalized liftings G(p,, p,) which 
satisfy both the ZA and OT conditions is of the following 
form, 

Ys(k - 1) (29) 

20 . 

(30) 

[:*:I] [ UAk-1) ] 
25 

Extended Horizon Lifting (OT Form): 
where, [ S,A; 1 :] [ syH; ] (31) / A N \ (35) 

30 m 1 P  n q n - 1  
-n,+nn- 

p.= [O,. . . ,o, 1,. . . ,1, p. 1.1,. . . ,1, 0,. . . ,o, 0,. . . ,O] 

n - h - n -  

A ~ =  S;ASYT 0 0 ; B ~ ’  SyCHSuT 

Cp = [S,AS,l’ 0 01; Dp = H, (32) m I p q n - 1  n (36) 
According to standard definitions (cf., E. J. Davison and S. 

of linear multivariable systems,” Automatics, Vol. 10, PP. 
643-658, 1974) values of h satisfying, 

(33) 

H, wang, CCpropeflies and calculation of transmission zeros 35 py’ Lo,. . . 70, 0,. . . 90, p, 0,. . . ,o, 0,. . . 5 0 ,  1.13.. . 3 1 1  

where elements m z ~  and l z ~  are arbitrary, ¶+, E R~ is 
an arbitrary (or null) 0-1 vector chosen identically in both p, 
and p,,; and n>O is the order of the irreducible plant of the 

40 form given by Eq. (1). Furthermore, if the plant (system) of 
Eq. (1) is obtained by a zero-order hold (ZOH) digitization 

A p - U  

d e t [ c p  :]=0 

are the transmission zeros of the transfer function from U,(k) 

Consider the following identity, arbitrarily. 
to Y,(k) defined by the state-space model (A,,B,,C,D,), of a continuous-time system, the integer qzo can be chosen 

45 Proof: By definition, the matrix B in Eq. (5c ) has the 
sparse form B=[O,IX,] where Ob~RNXN-“+’ is ’ a matrix of all 
“0” elements, and Xb~RNXn-’.  By construction of S, from p, 
in Eq. (35), the nonzero elements of S, multiply only 
elements of 0, in the product BS,? Hence BSUT=O. Like- 
wise, the matrix A in Eq (5a ) has the sparse form A=[O,IX,] 
where O , E R ~ ~ - “  is ’ a matrix of all “0” elements, and 
XucRNxn. By construction of sYc from pyc (i.e., 0-1 comple- 
ment of p, in Eq. (36)), the nonzero elements of S,C multiply 

55 only elements of 0, in the product A(S,‘)? Hence A(SyC)T=O 
and the ZA conditions of Eqs. (25) and (26) are satisfied. 

x -h. I 0 = ( - ~ ) N + “ U  In order to show the OT condition, first consider the case 
where q20 .  Then choice of Eqs. (35) and (36) ensures that 

60 the small matrix H, is of the form shown in FIG. 3, 

det(G)=det(G,,)det(G,,-G,,G,,-’G,,) (34) 

where, 

50 
GziG22 4 1 

and the inverse of G,, is assumed to exist. Assuming that H, 
is invertible, the identity Eq. (34) can be applied to Eq. (331, 
which gives upon substituting Eqs. (31) and (32), 

0 4 . 1  

1 P ”  (37) 

O 1  

4 . 1  0 
det [ 

X 

which proves (iii). Result (iv) follows by an identical 
analysis assuming that the OT condition Eq. (23) holds, and 
that the simplified plant (A,,B,,C,,D,) in Eqs. (29)-(32) has 
been squared down by a precompensator H,’. 

X I 3  0 

Hs=f: (. I x .) 
Lemma 1 is important since it gives conditions which p, 65 

where 3 E Rpxp is lower triangular with a nonzero diagonal 
(and hence is invertible), and HE R“”“ is given by, 

and p, must satisfy for the generalized lifting G(p,, p,) to 
have its transmission zeros at the origin. All results in 
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(38) 

L h2ntq-i . . . hntq . I  
Since 3 is full rank, it follows from the special structure of 
Eq. (37) that H, is full rank if %has full rank. To show that 
%has full rank, let (A,b,c) be any minimal (Le., controllable 
and observable) state-space realization of the transfer func- 
tion Eq. (1). The Markov parameters {hi} can be written as 
h,=cA"b,i=l, . . . , -. Substituting into Eq. (38) gives, 

1 (39) 

= 0 A q d  (40) 

where I is a reversed identity (i.e., I=[e,, . . . ,e,], I=[en, . . 
. ,el I), and 0 and C are observability and controllability 
matrices of (A,b,c), respectively. Since (A,b,c) is control- 
lable and observable, it follows that 0 and C are each full 
rank. The fact the system or plant of Eq. (1) is obtained by 
a ZOH digitization implies that AeRnX" is full rank (i.e., A 
is a state-transition matrix). These facts together imply that 
%in Eq. (37) is full rank and hence H, is invertible. 

If the system of Eq. (1) is not obtained by ZOH digiti- 
zation, the matrix A may not be full rank. However, the 
results still hold with the restriction that q=O since in this 
case Aq is replaced by identity matrix I in relation Eq. (40), 
which is always full rank. 

Theorem 1 is important because it extends Lozano's 
2n-lifting to a much larger class of liftings which enjoy the 
same zero annihilation properties, and thus provides greater 
latitude (extra degrees of freedom) in designing control 
systems. Note that the extended horizon liftings have total 
horizon length N=m+l+p+q+2n-l, which can be readily 
chosen longer than Lozano's lifting for which N=2n. Hence 
the phrase "extended liftings horizon". It will be seen that 
thc extra degrees of freedom provided by N=k+2n-l, where 
k=m+l+p+q, for example, will overcome several difficulties 
associated with the 2n-lifting. For convenience, this new 
class of liftings is referred to herein as having N22n-1. 

The following result is essentially a "dual" to the previous 
theorem. 

Theorem 2 A class of generalized liftings G(p,, p,) which 
satisfy both the ZA and IT conditions is of the following 
form, 

Extended Horizon Lifting (IT Form). 

N (41) 

12 
if the plant or system Eq. (1) is obtained by a zero-order hold 
(ZOH) digitization of a continuous-timc system, the integer 
q 4 0  can be chosen arbitrarily. 

Preof: The ZA conditions follow using the same argu- 
5 ments found in the proof of Theorem 1. Consider the IT 

condition Eq. (24). Given the lifting Eq. (41), H, has the 
form, 

P n  (43) 

10 .;.i" %) 
i x x  

From the structure of Eq. (43) it follows that H, has full rank 
15 if both 3 and %have full rank. The remainder of the proof 

is identical to the proof of Theorem 1. 
Note: Properties of Lozano's 2n-lifting (N=2n) follows 

directly from its interpretation as a special case of the liftings 
N22n-1 in Theorem 1 and Theorem 2. 

Corollary 1 Lozano's 2n-lifting Eq.(21) satisfies the ZA, 
OT and IT conditions. 

Proof: The lifting Eq. (21) is equivalent to the special case 
of the liftings in Theorems 1 and 2 where m=O, 1=0, p=l, 

2o 

p=[O], q=o. 
25 

ADVANTAGES 

The advantages of the extended horizon liftings in Eqs. 
(35) and (36), and in Eqs. (41) and (42) over Lozano's 
2n-lifting are as follows: 

(i) If one chooses 1>0 in Eqs. (35) and (36), there are more 
control inputs than outputs in the lifted system (Le., q,>cr,). 
It is shown below with respect to application to plant inverse 
control that these extra degrees of freedom can be used to 
design a controller which minimizes a quadratic control cost 
while simultaneously satisfying a deadbeat tracking objec- 
tive. This significantly reduces control gains compared with 
Lozano's lifting. 

(ii) If one chooses 1>0 in Eqs. (41) and (42), there are 
40 more outputs than inputs in the lifted system (i.e., op,). It 

is shown below with respect to channel equalization in 
applications to communications that these extra degrees of 
freedom can be used to minimize a quadratic error when 
estimating the input from measurements of the output. This 

45 is significant for reducing noise in problems of nonminimum 
phase channel equalization. Furthermore, the p vector can 
contain additional message information to increase the chan- 
nel throughput. 

(iii) If one chooses DO in Eqs. (35) and (36) or Eq. (37), 
50 there is an extra m*T seconds of free time which can be used 

to perform computations (where T is the sampling interval). 
Since m can be chosen arbitrarily, the use of extended 
horizon liftings for either control or equalization applica- 
tions is not constrained by real-time computer limitations. 

55 This is particularly useful for adaptive implementations 
which involve additional computation. 

30 

35 

\ 
~~ r 

m I P  n q 1 1 - 1  

n*h- -n  
p.=[O ,..., 0, 0 , . . . ,  0, p, 1.1 ,..., 1, 0 , . . . ,  0, 0 ,..., 01 

in I p q 1 1 - 1  n (42) 
-h* 

py=[0 ,..., 0. 1 ,.... 1, p. 0 ,.... 0. 0 ,.... 0, 1.1 ,..., 11 

where mZO and 120 are arbitrary, q=O, peRP is an arbitrary 
(or null) 0-1 vector chosen identically in both pu and p,; and 
n>O is the order of the irreducible plant Eq. (1). Furthermore, 

APPLICATION TO PLANT INVERSE CONTROL 

60 The placement of the transmission zeros to the origin by 
the class of extended horizon liftings of the form given by 
Eqs. (35) and (36) allows stable invertibility of the transfer 
function from U,(k) to YJk). A control law which will be 
discussed next deadbeats the response Y,(k) to follow the 

65 desired Y,(k), subject to the minimization of a quadratic 
control cost. 

To derive the desired controller, define the output error as, 
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(44) 
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E(k)=Y,(k)-Y,(k) -continued 

Substituting Eq. (27) into Eq. (44) gives, 

E(k)=-S~S~Y=(k-l t -H,U,(k)+Y,(k)  (45) 

Consider the problem of forcing the error in Eq. (38) to zero 
in a single step, while minimizing a quadratic control cost 
penalty, i.e., 

Results (ii) and (iii) follow by substituting the OT con- 
clition Eq. (23) into Eq. (53 ,  and noting that the resulting 
closed-loop matrix is stable with all of its eigen values at the 
origin. 

subject to 

E(k)=O. 

(46) 10 fiesult (i) of Lemma 2 is important because it indicates 
that control gains associated with using extended horizon 
liftings of the class denoted herein as N22n-1 will be 
significantly reduced compared to those from using Loza- 
no's lifting (N=2n). Result (iii) of Lemma 2 is important 

(47) 15 because it ensures that the complementary output Y,' 
remains "well behaved" even though it is not being con- 

In light of the output tracking condition of Eq. (23), this trolled 
minimization problem can be solved (see D. S ,  Remark 1 Instead of deadbeat control, a pole placement 

scheme can be obtained by modifying the deadbeat con- Bayard and D. Boussalis, "Noncolocated structural vibration straint Eq, (47) to become EQ=aE(k-l) in which the 
suppression using Zero Annihilation Periodic control," 2nd 20 ZAP control becomes U,"(k)=K"Y,~-l)+L"Y~(k)- 
IEEE Conference on Control Applications, Vancouver aL"E(k-1) 
Canada, September 13-16, 1993) to give: Example 3 As an example, a 12-state nonminimum phase 

transfer function is shown in FIG. 6 (pole-zero plot, sam- 
pling time T=0.025 sec), adopted from the ASTREX flexible 

U/(k)=H,'(-S#S,' Y,(k-l)+Y&)) ( 48) 25 structure model(cf. Bayard, 1993, supra and A. Das, J. L. 
Berg, G. A. Noms, D. F. Cossey, T. J. Strange Ill, and W. T. 

=K"Y,(k-l)+L"Y&) (49) Schlaedgel, "ASTREX-A Unique test bed for CSI 
research," Proc. 29th IEEE Conference on Decision and 
Control, Honolulu, Hawaii, pp. 201 8-2023, December 

30 1990). The open-loop response to an initial condition is 
(50) shown in FIG. 7. A simulation is first run using the deadbeat 

( 5 1 )  
control Eq. (49) with the Lozano's 2n-lifting, m=O, 1=0, p=l, 
p=[O], n=12, q=O, N=2n=24, and using Y,O (i.e., a vibra- 

Here the superscript "0" is chosen to emphasize the fact that tion damping objective). The response is shown in FIG. 8 to 
the control nulls (i.e., deadbeats) the output. Also, in light of 35 reach -3x104 at the Output and 500 at the input. As expected 
the OT condition, H, has full row and one can write from the theory, the response is deadbeat after a single 

horizon. However, this control law is unusable since the H1=HsT(H,H,T)-' (cf., Barnett, supra ). units are in volts, and the allowable range is only +IO Volts. For convenience the ZAP control law is summarized in It is emphasized that these extraordinarily large responses the block diagram of FIG. 5. It provides the following result. 4o are typical of the 2n-lifting due to the fact that the plant is 
Lemma 2 (ZAP Control) Consider the closed-loop system inverted on a horizon of length N.T=0.6 set. 

(36) under ZAP control Eq. (49). Then, ing, the pole placement control of Remark 1 is used. The 
choice ~ l ~ O . 5  is made to get approximately a 10-second 

each stage, subject to the deadbeat tracking constraint Eq. 45 decay time (any slower would be worse than the open-loop 
(4719 response). The results are simulated but not shown here 

(ii) All closed-loop Poles are at the origin @.e., the since it turns out that the responses are reduced 50%, and are 
closed-loop response is deadbeat), and h a ~ e  ys(k) con- still unacceptably large by several orders of magnitude. The 
verges to Y,(k) in a single step. ZAP control using an extended horizon lifting of the class 

(iii) The closed-loop system is internally stable (e.g., 50 N22n-1 with m s ,  1 4 0 ,  p s ,  q=O, n=12, N=63 was tried 
Y,"(k) remains bounded). next. The results are shown in FIG. 9 where it is seen that 

Proof Result (i) follows from the OT condition in Eq. both the input and output are well within the allowable 
(23) and well kmwn minhm-~-norm Properties of the ranges. The deadbeat nature of the response is also noted, as 
Moore-Penrose inverse (cf., Barnett, supra). Now form the the vibrations are damped instantaneously after the first 
closed-looP system from the simplified lifted Plant Eqs. (27) 55 horizon at time T=3sec. This demonstrates the advantage of 
and (28) under ZAP control Eq. (49), using the extended horizon liftings of the present invention 

instead of Lozano's 2n-liftings. 
(52) Application to Channel Equalization 

Zero Annihilation Periodic (ZAP) Control Law: 

where the corresponding feedback gains are defined as, 

K"=-H,'S+S,' 

Lo=H,l 

arising from the OT extended horizon lifting Eqs. (35) and In an attempt to get a practical response with the &lift- 

(i) The quadratic control cost Eq. (46) is r n i n h t ~ e d  at 

An important problem in communications is that of 
udk- 1 )  60 equalizing (Le., compensating for undesired amplitude-fre- 

quency response) a nonminimum phase channel. The usual 
problem is that the channel cannot be inverted in a stable 

( I -  HSH,')S,AS," 0 0 (53) fashion. However, using the input tracking (IT) extended 
horizon lifting form of Eqs. (41) and (42), this problem can 

65 be overcome. 
Referring to FIG. 10, let U,(k) be the sequence of mes- 

sages to be sent by a transmitter T, and assume that an IT 

[ ] =A,/ [ :(:I:) ] +BelYd(k) 

where, 

S$(I-HSu7H,'Sy)ASyl 0 0 ] ; 
-H:S+YYT 0 0  
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extended horizon lifting form given by Eqs. (41) and (42) is 
used to transmit thc data (i.e., the signal sent is given by 
u(k)=SuTuS(k)). The channel C is assumed to be a stable 
linear nonminimum phase transfer function for a plant of the 
form given by Eq. (1) with a plant order n. Then from 5 
Theorem 2 and Lemma 1, the plant (channel) dynamics 
given by Eqs. (27) and (28) are 

Yr(kkW3(k- l  )+HJJ,(k) 

noise. It is worth noting that this channel equalization 
approach can be made adaptive by using standard recursive 
algorithms since the new liftings are linear-in-the-param- 
eters. 

It is expected that the present invention (extended horizon 
liftings) will be useful in many areas of modem control, 
neural control, fuzzy control, adaptive control, communica- 
tions, adaptive filtering, signal processing, or other applica- 
tions where a stable system inverse is desired but not 
possible due to nonminimum phase constraints. 

(54) 

where I claim: 
1. An improved method for providing periodic gain 

(55) adjustment in a plant of irreducible order, such as for control 
of electrical, mechanical or chemical systems, or for equal- 

At the receiver R, the quantity Y,(k)=S,Y(k) is measured, ization of communication channels, comprises the choosing 
and it is desired to estimate the messages U,(k) which were l5 of horizon time N>n of liftings in periodic input and output 
Sent. For this Purpose, an output Prediction is ys(k) is signal windows p, and py, respectively, of said plant where 
formed as, N is an integer chosen to define the extent of each of said 

windows p, and py and n is the order of the irreducible 
input/output plant model given by an equation of the form 

As=S&S,'l* 

P,(k)=A,Y,(k-1 ) tH3OS(k)  (56)  

and an estimate 0, found by minimizing the least squares 
criteria, 

20 
A(z-')y, = B(z-')u, 

A(z-') = 1 + g u,z-', B(z-') = b,zp 
(57) r=l r=l 

F" (Ys - tm, - is) 25 
US where polynomials A and B are relatively prime, such that 

the horizon time for liftings have a total length N=m+l+p+ 
q+2n-1, and in which the number of dements 0, in the 
liftings taken from the input signal is greater than the 

(58) 3o number of elements o? in the liftings taken from the output 
signal for output trachng in control systems, and in which 

where one can write H,'=(HTH,)-'Hs~ Since HJ has full the number ou in the liftings taken from the input signal is 
colUmn rank (ct? It noted that this less than the number of elements or taken from the output 
dynamical system represents a stable inversion of the non- signals for input trackng in communication systems, and the 
minimum phase channel characteristics. Furthermore, the 35 following conditions hold for output tracking: 
use of an exknded horizon lifting with b o  has allowed where the superscript t denotes the Moore-Penrose inverse 

ing in case of noise. Lozano's an-lifting in this application said vector p, along the top of a matrix H and py 

would not allow smoothing and would be Very susceptible to along the side of said matrix H and &ng as said submatrix 
noise. The use of p in the IT extended horizon lifting also 4o H, all of the elements of said matrix H along both borders, 
provides a means for sending additional information with and 
each packet, to improve the overall throughput. 

Since the IT condition Eq. (24) holds for the extended 
horizon lifting, the unique solution to Eq. (56) is given by, 

Oz=-H~(AxYs(k-l FY,(k)) 

channel inversion by least squares which provides smooth- of a submatrix H, obtained directly from p, and py by 

BS,'=O 

CONCLUSIONS A(S,')'=O 
45 

A general class of liftings N>n has been denominated as 
N22n-1 in order to distinguish from the special case of 
Lozano (N=2n) and have been shown to have the same 

In contrast to Lozano's 2n-lifting, all the new liftings include 50 
horizons greater than 2x1, Le., they are of the extended 
horizon type N>2n-1 and o,>ov or op,. The use of 
extended horizons of type N>2n-1 many dif- 
ficulties associated with L~~~~~~ 2n-lifting, For a 
Zero Annihilation Periodic (ZAP) controller is defined for 55 where H,=H,V7 lo y, are 
which the control gains can be significantly reduced as 
compared to Lozano's lifting. This is due to a quadratic 
control cost which is minimized simultaneously with the 

a simulation example where the control torque was reduced 6o 

where ~ ,=w(~,) ;  s,=w(~,); s v ~ = ~ ( p y ~ )  and said liftings 
have the following representation 

desirable zero annihilation properties of Lozano's 2n-lifting. Y,(k)=S,AS: Y,(k-l)+H,U,(k), and 

Y,qk)=S,'AS,'Y,(k-l)+S~I~S~ UJk ) 

whereby the transmission of zeros of said liftings from U, to 
Y, are annihilated and the transmission of zeros from V, 

and H.~=SsHS~T1 and 
the following conditions hold for input tracking: 

I l ~ H ~ = = l  

deadbeat tracking objective. Thc effectiveness was shown in 

4 orders of magnitude. .4(S,')7=0 

BS,?=O 

As a dual result, it was shown that a related class of 
liftings enables the on-line eaualization of nonminimum 

and said liftings have the following 
u 

phase channels in communication systems. This overcomes Y,(k)=S/tS,TY,(k-l >tS,'HS,,"U,(k), 
the standard bottleneck of inverting the channel in a stable 65 
fashion. Here, channel inversion is accomplished by least 
squares estimation which provides smoothing in the case of 

and controlling the performance of said plant in response to 
said chosen horizon time. 
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2. An improved method as defined in claim 1 wherein U,"(k)=KOY,(k-l)+L"Y,(k)-aL~E(k-l ) 

extended horizon liftings for output tracking over a selected 
input signal window p, and a selected output signal window 
py are of the form 

where, 

E(k-1 )=Y,(k)-Y,(k) 5 
N 

T \ 
m 1 P  q n-1 

- - + n * r - - - -  Lo=Hi 

A K"=-HtS,AS," 

p.=[O ,..., 0, 1 ,..., 1, p, 1,l. ..., 1, 0 ,..., 0, 0 , . . . ,  01 
10 and a is a scalar less than unity. 

m 1 p q n-1 n 5. An improved method as defined in claim 1 wherein said 
n n+* n n extended horizon liftings are of the form, 

p,=[O ,..., 0, 0 ,..., 0, p. o,.. .,o, 0 ,..., 0, 1.L.. .,11 

N 
r \ 

A 

rn I P  n q n-1 where m, 1, p, n, q, and n-1 are elements of the lifting, and 15 
m 2 0  and 180 are arbitrary, peRP is an arbitrary or null 0-1 

order of the irreducible plant, and q=O, unless the plant 
liftings are obtained by a zero-order-hold digitization of a 
continuous-time analog signal, in which case q>O can be 
chosen arbitrarily. 

3. An improved method as defined in claim 2 wherein 
output tracking for control is implemented using the follow- 
ing Zero annihilation Periodic control law 

mr-, -n+n 
p,=[O,. . . ,o, 0,. . . ,o, p, 1,1,. . . ,1, 0,. . .,o, 0,. . . ,01 

20 n n+* * n 
p,=[O,. ..,o, 1 ,... ,1, p, 0,. ..,o, 0 ..... 0, 1.1 ,..., 11 

for input tracking such that there are m+l zeros on the left in 
the window p,, and only m zeros on the left in the window 

25 py so that the number of elements in the window (T, is less 
than in the window oY. 

6. An improved method as defined in claim 5 for input 
tracking wherein an estimate of the transmitted word U, is 
computed at the receiver of a communication channel as 

vector chosen identically in both p, and py and n>O is the 

rn 1 p q n-l n 

V/(k)=H,'(-S,AS,'Y,(k-l)+Y&)) 

where the feedback gains K" and Lo are defined as, 

K"=-HtSyASy" 30 

LoH; 
U,=-H:(A,Y,(k-l)-Y,(k)) 

where H,' is the Moore-Penrose inverse of H,, and Y, is a 
desired output signal to be tracked. where H: denotes the Moore-Penrose inverse of H,. 

4. An improved method as defined in claim 2 wherein 35 
control is implemented using a pole placement scheme, * * * * *  
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