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A nev class of ~xponentially stabilizing control laws for joint level control of robot arms is introduced.
It has been recently recognized that the nonlinear dynamics assoclated with robotic manipulators have certain
inherent passivity properties. More specifically, the derivation of the robotic dynamic equations from the
Hamilton's principle gives rise to natural Lyapunov functions for control design based on total energy
considerations. Through a slipght modification of the energy Lyapunov function and the use of a convenient
lemma to handle third order terms in the Lyapunov function derivatives, closed loop exponential stability for
both the set point and tracking control problem {s demonstrated. The exponential convergence property also
leads to robustness with respect to frictions, bounded modeling errors and i{nstrument noise. In one new design,
the nunlinear terms are decoupled from real-time measurements which completely removes the requirement for
on-line computation of nonlinear terms in the controller {mplementation. In general, the new class of control
Jaws offers alternatives to the more conventional comnuted torque method, providing trade offs between
robustness, computation and convergence properties. Furthermore, these control laws have the unique feature that
they can be adapted in a very simple fashfon to achieve asymptotically stable adaptive control.

1. Introduction

The problem of joint level control for the multi-link rigid articulated robot arm is addressed in this paper.
Accurate measurements of the joint variables, either angular or displacement, and the joint velocities are
assumed available. Traditionally, this problem has been treated by the PID algorithm. Since the justification
of using PID control is based on either linearizaticn or some local stability argument (1], 1ts application
is limited to small angle maneuvers. Large excursions usually require partitioning a desired trajectory into
intermediate points and PID control is used to drive the arm between adjacent points. This approach is less than
satisfactory since global stability and adequate performance are not guaranteed. This then motivates the
computed torque method [2] which compensates for nonlinear terms in the robot dynamics. Assuming that the robot
dynamics are known exactly, the compensated system apvears like a decoupled system of double integrators and
the closed loop dynamics can be shaped into desirable forms.

A different approach has been advanced in the past few years. It is based on the recognition that robot arms
belong to the class of natural systems, which means t{me invariant, unconstrained and lying in a conservative
force field [3]. It is natural to investigate if the structure specific to this class of systems can be
exploited in controller design. It has long been known [3,4 and earlier] that negative proportional (generalized
position) and derivative (generalized velocity), or equivalently PD, feedback globally asymptotically stabilized
natural systems. The stability analysis is based on a Lypaunov function motivated by total energy considerations.
Application of this result co robot arms has been relatively recent. In particular, global asymptotic stabilfty
under joint level PD feedback with gravity compensation has been shown [5-8]. Application to the tracking problenm
is more difficult due to the time varying nature of the problem. More specifically, the stability analysis
requires a generalization of the invariance principle to time-varying systems; this issue has been partially
addressed in [9-10].

In this paper, we will introduce a new class of exponentially stabilizing control laws for both the set point
and tracking control problems. The stability proof is achieved by making use of a particular class of energy-like
Lyapunov functions in conjunction with a useful lemma for addressins the higher order terms in the Lvapunov
function derivatives. In the set point control case, Lyapunov functions based on various artificial potential
flields are used to derive control laws possessing desired properties. These include set point controllers having
simple PD or PD+bias structures and the ability to handle joint stop constraints. In the tracking control case,
this new class of Lyapunov functions avoids the need for a generalized invariance principle, which, as mentioned
above, has been the major source of difficulty {n existing approaches. This leads to a new class of exponentially
stabilizing tracking control laws. In one design among this new class, the nonlinear terms are decoupled from
real-time measurements whi:zh completely removes the requirement for on-line computacion on nonlinear terms in
the controller implementation. This result is believed to have no counterpart in the present day l{terature. In
general, the new class of control laws offers alternatives to the more conventional computed torque method,
providing tradecffs between robustness, computation and convergence properties. Furthermore, these control laws
have the unique property that they can be adapted {n a very simple fashion to achieve asymptotically stable
adaptive control. This last property will be elaborated on {n the companion paper [13]. The closed loop
exponential stability also allows the robustness property to be established with respect to viscous and Coulombd
friction, bounded modeling error and instrument noise.
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This paper is organized as follows: Some background derivations, identities, notations, lemmas and relevs
results in the literature are covered in Sec. 2, Several useful set point controllers based on different arti-
ficial potential energies sre presented in Sec. 3. A new Lyapunov function is also introduced to demonstrate
exponential convergence. In Sec. 4, a new family of exponentially stabilizing tracking control laws are derive
We will discuss the trade off between the ease of implementation and the strength of assumptions for these
controllers. Their robustness properties are also analyzed in this section. Finally, conclusions are drawn
in Sec. S5 togather with a table summarizing all of the controllers presented in this paper and the conditions
for stability. Due to the size limitation of this paper, the detail derivations are given in kj .

2. Background

2.1 Robot Dynamic Equation

In this section, the dynamic equation of robot manipulator is derived. At the first glance, it appears
as a complex, tightly coupled set of nonlinear equations. However, based on derivation from Hamiltonian
principle, the nonlinearity actually contains a great deal of structure. As a result, some important
identities are developed in the next section on which the rest of the paper is based.

An n-link rigid robot arm belongs to the class of so-called natural systems with the kinetic and
potential energies given by

1 T
T =34, Maq)lq,
T (2.1)
Us - qp u + g(ql)
where
T = kinetic energy , U = potential energy , q " joint angle or position vector ¢ R" .

9 " joint velecity vector € R" , H(ql) = mass inertia matrix ¢ R°°" . g(ql) = gravitational potential energy ,

n
u = joint torque force vector € R

Note that since all the analysis is done at joint level, the arm can be redundant (more than 6 joints).
To derive the differential form of the robot dynamics, first set up the Lagranglan

L=T-1vU
Then apply the Lagrange's Equaticn

3L L

Gy -2

4
de qu aql

This gives the dynamic equation of robot motion:
a = q,
! (2.2)
M(ay)a, = - C(q;,9,)9, - klq)) +u

where
2 T T 1 T
Cl5y.q,) = 121[(e‘ a; M (a,))" - F (ey q, M, (q )] (2.3)

e - ith unit vector
) M(q,)
M, (q - —_—
171 aqu
3g(q,)

k(ql) - ——-—aqn

9y " ith component of 3
The term C(ql.q )q, represents the coriolis and centrifugal forces and k(q;) reprzsents the gravity load.
Note that C(ql, qu is determined entirely from the mass-inestia matrix. Many desirable properties, for

example, inherent passivity, well-posedness of solution (no finite escape under any bounded control),
existence of solution to optimal control problem {14] etc. are the consequence of this additional structure.

Other impdrtant properties of (2.2) include that M(q;) and Mi(ql) are symmetric and M(&l) is positive
definite, for all q; ¢R". For later use, the matrices C(q;,q7) and My(q;) are interpreted as ROXT yalued
function of two n-vectors (q; and q3) and one n-vector (q;), respectively. ’

2.2 Some Useful Identities

Some key identities that will be used throughout this paper and the companion paper [l3] are derived
in this section. First define some notations:
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My(3;,2) * 121 My(ap)z o, (2.4)
fi(ay,9,) = $¢ H(qy) (2.5)
IGay.2) ;fl [Cey 27 M, (a))) = (e, 27 ¥ (a0T] (2.5)
T(80950059) = (92705907 (7 (310, (ay7054) = C(a,,4,)4,) 2.7

qld' q2d = desired joint position and joint velocities

4q; = q, - q
1% 9 794 (2.8)
8a, = 4z - 9y,

Again, HD and J are regarded as R™*™ valued function of two n-vector arguments. Note that J is a skew symmetric
matrix, f.e., J+JT -0,

Tdentity 1

: . ’ (2.9}
M(q,,9,)2 = My (a;,2)9,
‘Tdentity 2
- L (2.10)
C(ql.z)z -3 (H.D(ql.z) - J(ql.z))z
Identity 3
2.11
J(qy,2) = HDT(ql.z) - HD(ql.z) ¢ )
Identity &
2.12)
MDT(ql.x)y - MDT(ql.y)x (
Identity 5
T .
r(q;,495:9,4) = % 8q, (3(ay,97)94 ~ M, (a;494)97) (2.13)
€2.14)
- % AqZT(J(ql.QZd)qz - Mp(qy,95)9,4)
2.15)
180,700 950 - Hpla1192)0) (
2.16)
- % AqZT(J(ql.qz)qz - 1,(ay,954)97) (
Identity 6
1 -
M (q,.84,)9, - Cla}.a,)q, - 7 (3(g1 1930,y Mn(ql.qu)qz) .
1
- MD(ql.qu)q2 - C(ql.qz)q2 -3 (J(ql.qu)q2 - Hb(ql.qz)qu)
T { (2.17)
- % (MDT(qrqu)qu + M (ql.qu)qu - Mb(ql.qu)qu + HD\ql.qu)qu)
1
Mylapa8a,0a, - C(a144,)9; = 3 (30,5409, = M5(a)195)954)
1
= (MDT(ql.qad) - Mn(ql.qzd))qu + % MDT(ql.qu)qu +3 MD(ql.qu)qu @.18)
1
. Mn(ql.éqz)q2 - C(ql.qz)q2 -3 (J(ql.qz)q2 - HD(ql.qu)qz)
2.19)

- 3 ((ay,20))30, % ¥lay, 3099

2.3 Ilmportant Lemmas <

In this section, two important stability lemmas are presented that will play pivotal roles in later
sections. The first lemma is essentially a local stability theorem that establishes a region of convergence.

The second lemma generalizes the first result to the Lagrange stability case. The proofs of these lemmas are
given tn [23].
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Lempa 2-1
Given a dynamical system

X ot xeax, 8) 4 x e 20

Let f1's be locally Lipschitz with respect to xj,...,xy uniformly in t on bounded intervals and continuous

int for t > 0.
Il].x...zn.N
x

Suppose a function V:R
N

T
V(xl.....xn. t) e 1'§.1 Xi Pij(!lu--'cxji t)‘J ’

R, “* R, 1is given such that

V 1is positive definite in xl.....xu

. .20)
Vxpaeerrigs £ < Oy = I vy, llxg )] Ix 0] 12 2.2
1 e B S ug 1 jZI g1y 1
1 24
where °1’ YiJ' kij >0, 121 [ 11 €{1l,...,N}
Let 51 > 0 be such
Eill"ill2 V() eee0xy, B) (2.21)
Lee v, 2 V(x)(0),....x,(0), 0)
Ifviel,,
! v oty
a, > J v < 2 (2.22)
L ger, M
2 v,y
then V A, ¢ 0, o, - I Yy (Eg) 2),
jtlz1 ]
. 2
V (xpseeaxys e <=1 A =l ve>o (2.23)
1:11
In the above lemma, we choose to bound over z Yij lej(t)llltj

chz1

(Condition (2.20) rteflects that choice). This choice is arbitrary; in fact, we can extract any quadratic
cross term from

k
! Yiy ||xj(t)|| 14 Hx‘t(c)l]2
Jelzy
and overbound the rest. After completing square stability condition similar to (2.22) can be stated.
We do not pursue this generalization here.

Letrma 2-2

Supnose in Lemma 2-1,

. k 2
V(xyperemt) <= 1 @, = T v x4y Hx He 40 (2.24
1 N gel) 1 ger, MO 1 )
1
I - (1,...,N}
Let p = sup [1PCx, venerxg,t)|| <=, [P], =P
xeR™L, teR+ 1 N 1 4
IfVviel
1 3
. v,
a, >+ ] Yy @ (2.25)
o jeIzi 3
then
P [s]
limsup V (xl(t).-~-.xN(t).t) <7 (2.26)
L - x
Yo7
1 o
where A « = nin (a, - z Y (o) ) ,
®oger oy, MYy 2.2
Furthermore, the convergence to the set {(xl,....xN): ][xk||2 :-_ET , kcIl) 13 exponential with rate A.
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The utility of this result is mainly in robustness analysis. Basicslly, given a bounded set of
possidble initial conditions, excluding a neighborhood of the origin, ay's must be large enough in the
sense of (2.23) for tha trajectories to be uniforaly bounded. What {f V, = O? We can shift t = 0 to
some finite time later when V¢ ¥ 0. In practice, a neighborhood around origin can usually be excluded
since some robust locally stadle control algoritha such as PID takes over.

2.4 Recent Results

Some of the recent results related to Lyapunov analysis of robot systems are reviewed in this section.
For the set point control problem, [5-10] has applied the result that linear negative feedback of generalised
position and velocities globally asymptotically stabilizes a natural system to robdot uanipulators. We will
restate this result, mention work for the tracking nrodlem in [9,10,18) and state some open issues that
will be addressed in the remainder of this paper and in [13],

Theorem 2-1
Consider (2.2) with the control law

ue - xp 8q) =K q, + k(qy) xp >0, xv >0 (2.28)

The null state of (Aq,, q,) - system is a globally ssymptotically stable equilibriuam.
1° 2

The main idea of this approach is to shape the potential field in such a way that it is globally convex
and attains a global minimum at 4q; = 0. Complete damping (i{n the terminology of [3]) is added through the
derivative feedback to drive the system to the minimum potentisl energy state which by design is the
desired state. To be specific, suppose the desired potential field is U'(Aql). The total energy under
this potential is

VeT+U* (229)

Rewrite V as
ver+u run -1 av® 4ur -0

where U° 1s the original potential energy without extsrnal force fields, and V% 1s the corresponding
total energy. Let p = M(q1)q; be the generalized momentum. Prom Hamilton's equation,

0
Ve AT Taur _3U
v (ap Yutay (3Aq1 asq,

LI LI o (230)
" 92 O " 3aq) " asa)

Hence, to drive the desired total energy to its minimum state, we can select ([5])
o

. e U {2.31)
us=-Kaq - isq, ' 3eq;

Then V = - qZTquz. From the fact that -Z&ZTquz is uniformly bounded (V < 9), qz(t) - 0ast~= [19].

. av°

- - + u
P aql
o
R
91 9
P S . au @.32)
3q1 quz Mq1
Since 3;—— - 0, ?g' - 0, also. Hence, i{f U*(4qq) is globally convex with mintimum at Aql = 0, Aq,(t) - O
1q 34q <
1
as t * = If U*(Aql) . % AqlrkpAql. Theorem 2-1 is immediately obtained.

Obviously, any other potential field convex in Aq; that has global minimum at 4q] = 0 (and no local
minima) can be used. We will use this idea in the next section to address the joint stop issue.

This control law is very appealing in its simplicity and obvious robustness with respect to
modeling error in mass matrix, and centrifugal and coriolis terms. Generalization to the tracking
problem is partially addressed in [9, 10]. A control algorithm is given in {9], but it lacks stability
analysis. In (10], Metrosov's Theorem (ll] 1is used. A question remains on the necessity and
applicability of the Metrosov's Theorem to the tracking problem. One version of the tracking control law
ir. Section 4 is the same as in [10], but the stability {ssue i{s resolved more completely. Nonadaptive
version of the tracking control laws in [10, 18] do yield global asymptotic stability. However, the
simple structure of (2.28) {s lost; even for set point control, full model information {s reeded.
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Based on the above very brief review of the currently available pertinent results, it {s evident that the
folloving issues remain open:

1. Can we get swvay with no gravity information, thus achieving s "universal” (arm independent) set
point control law?

2. Computed torque achiaves exponential stability. Are schemes based on energy Lyapunov functions
inherently inferior (s.g., only asymptotic stability is possible) or have we not been clever enough
in choosing the Lyspunov functions?

3. The tracking problem produces s time-varying system. Can the Invariance Principle still be applied?

4, How far can ve reduce thc on-line computation requirement (thus sllov increasing performance) for
both set point and tracking problems? What is the price to be paid?

S. Can ve ensure any robustness properties with respect to friction, instrument noise, modeling errors?
6. How does one incorporate joint stop constraints?
7. Would these schemes (set point and tracking controls) still work 1f unknown parameters are adapted?

The rest of this paper will be devoted to answering issues 1-6. The last item is sddressed
tn {13} and [24].

2.5 Computed Torque from Lyapunov Perspective
In Section 2.4, we introduced the total energy Lyapunov function (2.29) to derive a simple set point

control law. The computed torque method can also be motivated in the same manner with s different
Lyapunov function. For generality, we will consider the tracking case. Let

1 2 1 T
V(sa;.8q,) = 3lea, (" + 3 89" K sq) (2.33)
Calculate derivacive along solution,
¥ = 39,7 (q,)(-CCq, 00,00, - k(g + o) - a,, + )
9 90 (=C1a 09)q, = K(q) + u) = ayy * Kpha

If the computed torque control is used

[+
[ ]

+ + Q.. =K -
k(q)) + C(qy.ap)a, + Mlq))(ay, - K 8q) - K, 89,) (2.34)
then
T
Vit K
From the same line of reasoning as before, the closed loop system is globally asymptotically stable.
However, we know that the closed loop system is linear, therefore it is exponentially stable. This means

that we shoulé look for a better Lyapunov function. An obvious choice {8 to add in a cross term in
(2.33). <Ihen

1
V(8q,.89,) = 5 Hquuz + % Aqlruzp + cK Jaq, + chxTqu (2.35)

where ¢ is small constant so that V is positive definite. Take derivative and apply (2.34),

3 R T T
Ve -, Kv:\qz + caq,” K8q) + c}Iqullz - cbq, KpAq1 - chlT K sq,

.. . 2 _ T
(9540 (Ky) =€) 1]aa,l} caq " K aq,

which shows closed loop exponential stabilicy.

Note that i{n (2.34), in contrast to (2.28), even for set point case, full model nonlinearity
cancellattion {s needed. The approach in this paper is to use the energy lLyapunov functfon fnstead of
(2.33) to generate control laws. We will see in later sections that this affords a much larger
class 1;‘ controls vhich contains much simpler structure in certain cases (especfally for set point
control).

3. New Results on PD Set Point Control

J.1 Simple PD Controls

In this section, we will explore using different U* {n the controiler design.

suggesced in [5]: The following bas been

1 T
L*(3q,) = - 2q, K aq, + g(& - - T
1 7 “Y 0 9 z(uql+q1d) g(qld) AqX k(qld) (3.1)



84 l’ is sufficiently large, Aq‘ = 0 is the global minimum of U(Aql). Hence, 8 simpler control lew can be used:
® g lg -
Yoo KTey - Ka, v k() (3.2)
‘ Suppose each joint is connn_tnod between joint stops:

) ) ;
9y Zayy S 9, (3.3)

and the set point {s in the interfor of the joint inputs:

() - (h) .4
N1 Y1 = YNge 29 Uy (.9
, Lat the desired potential function be
n
. -1 T A 33
"a Ut(8q)) = 7 Bq)" K e ¢ tzl (H(Bay +a) ) + Li(Bay a0 a3)
wvhare lt and L1 are appropriate upper and lower barrier potential functions for joint 1 [hg .
Then, 34; * 0 {s a globel alnimua of U*(q,) 23] . From (2.31)
(3.6)

ue-Ka,-Kpdq - H(8q,) - L(8q,) + k(a;)

Ik achieves
Similarly, if Kp is sufficiently large (Kp + 33;: (Aql + qld) > 0), the following control law also achiev

global asymptotic stability:
u= - K, - Kosq) - H(Bq)) = L)) + kla),)

Control laws (3.2), (3.6) and (3.7) still require information on the gravity load. It is interesting to
ask {f this last plece of model information can be removed. This case corresponds to the desired potential
energy

.n

U.(Aql) - % Aqlr Kbdql + ;(Aq1¢qld) (3.8)

The corresponding control law is

. ue - KpAql -K, qu (3.9)

From section 2.4,
302 (4q,) = Kiq, + k(8q,+q, ) ~ 0
38q, N1 p N N e

This i{mplies

Umsup [[8q) ()] < 0y, (k) q:::nll k(ay) ||

Ik(q,)
n - 1 ]
It Kp + 3q1 >0 Vqlcl . ka(AquqN) is a contraction map in aq,. Then 1! U such that
“ ; ) «
Kp(c1 qld) + k(ql ) =0 (3.10)

- *
%1: q,(t) = q,

This result suggests a very simple, robust and practical control scheme. The feedback gain X_can be chosen
larggkznoggh to justify the use of PID control {1, ch. 6 of 19] wvhich is locally stable. P Typically, k(ql)

q
and —3311— are composed of trigonometric functions, therefore, they are uniformly bounded.

3.2 PD Control with éxponen:ial Convergence Rate

Use of the Invariance Principle in Section 2.4 only shows asymptotic stability. Some guaranteed rate of
convergence is highly desirable not just fcr performance reasons but for robustness analysis and adaptive
control also. In Section 2.5, a Lyapunov funct{on with cross tera has been used to show exponential

. stability. This suggests a similar modification here. The result is summarized below.
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Theores 3-1

Civen the control law (2.31)

au' .

s « K P m— 2.31
v viz © Dql ¢ )
Suppose 3 v > 0 such that

m," e B2y > v loay 112 JEEREY

and U*(Aql) has a global minimum at Aql = 0, then the closed loop (Aql.qz) system is exponentially stable.

Proof:

Modify the total energy Lyapunov function (2.29) to
T 1
VeT+ Ut s+ chl P+ ch1 K Aq1

where ¢ is s small constant so that V is positive definite {n p and q;. Wicthout loss of generality, U® can
be considered positive definite (n 9 (by adding an appropriate constant). Then from (2.32),

3U' 3U T T 3T BU
Ve q (u $—— =) +cq, p+tclq (- - +u) +cq K v ha
2 Bql aql 2 1 aql Bql 2 3
T T T 3T T Jyu*
" -9y Ky *teaq, Mada -clq o= -cba EN

Let

us sup |[Map]] (3.12

qu
1 T 1 2
f - inf . - - -
1 11641‘1-1[U (3g,) + 7 ©49; Kqul 7 €ut’] > 0 for some constant 1. (3.13)
I 1
- 9, =

From lLemma 2-1, ¥ lz e (0, a, - a1 (E;)z)'

v . 2

Ve agilaag it -y gyl
Note

n

it .1 T T

Yay © 2 121 &y 9 (a9, = 7 M (a09))q, (3.14)
Then

V< - - 2 2 T
V- CpintRy) - ewdllayll® - c v laq||® - % 89y "oT"‘x"‘z"‘z
Def ine

n
no=sup [ [IM (e ]
q t=1 ! 1 (3.15)

2

2
3 Haq 12 < a Tlaa 12 4 vy Hag, 1] Hsg,l12

Choose

Jr—

¢ 3 «)w+in<rﬂf‘ (3.16)

min

where V =V ' and
Q
t=0
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<=2V
for some A > 0. Hence, the closed loop system is exponentially stable. ’

Given any U* according to (3.11), > 0 and initial condition, there alvays exists c that satisfies
(3.16). Even though c is not needed in the implementation, its maximum allowable size affects the
convergence rate. The artificial pocentials U* = 1/2 AqlT KpAql. (3.1) and (3.5) all satisfy the
assumptions of Theorem 3-1. Therefore, the corresponding closed loop systems are exponentially stable.
For the potencial given by (3.8) and Kp large enough (Kp + %E_ > 0)° we can add s constant to U* so

q1

that U* {s positive definite in ql-qz and (3.11) is satisfied for Aql-ql-q;. vhere q; solves (3.10). Then
Theorem }~1 implies exponential convergence of q; to q{ which is within °u1n(xp) oup]|k(q1)|| from the true qpq.

4., New Results in Tracking Control
4.1 Exponentially Stable Algorithms

Frequently a robot is required to follov a prespecified path for continuous action at the end effector
(e.g., arc welding), tracking of a moving target (e.g. pick and place operation from conveyer belt) or
other high level objectives (e.g., time optimality, collision avoidance, arm singulacrity avoidauce, etc.).
This can be posed as the problem of tracking the desired positions and velocities (q)q, q24) by (q1,92). In
this section, we will extend the basic ideas put forth in Section ] to the tracking problem. The error

equation I8 now {n the form
89y = 8ap
o - - - p 4.
M(q,)3q, C(q,19,)a, = k(q;) + u - M(g))ay, 4.1)

We will first state several direct generalizations of Theorem 3-1. An energy type Lyapunov function
similar to (2.33) uoced in Section 2.5 to motivate computed torque is used here.

Theorem 4-1

Consider (4.1) with the control law

u e - Kde, + ki) - %gif (8q)) + M(a))ayy = D(a;.8;5.97,) “.
where D is given by any one of the following expressions
Day8y05) = (308118004 = Hplayagy)ay) é-22)
D(a;.q,.9,,) = % (J(a,9,406, = Mp(q;.9,)9,,) (4.2b)
D(ay1ayayy) = 7 (381050004 = H,(a1.6,)0,,) (4-2¢)
D{q;.q5.9,,) = % (J(ay,q,)q, - Mp(a;.954)9,) (4.2d)
Assume 3Jv > 0 such that
aq, 322: @a) > v [lall? (4.3)

and U'Clql) i{s positive definite in 2qp- Then the null state of the ngl.aqz) system is a globally
exponentially stable equilibrium.

Proof: Use the following Lyapunov function
vt . 1 T T 1 T
Vi(iq, , o - L N bt + Ur(y : h Y 3 S
( a qz) 3 14, w(ql) q, +U ( ql) * ¢ oagy W(ql)qu + 3 oaq) Kvuq1 (6.4)

where ¢ is a small constant, such that V is positive definite in iq

and aq,. Take derivative aiong
solution: ‘

1

5 0a T . 1 Jys

V (8q).3q,) = 3q, (M(q))8q, + 3 M{q;,dq,)q, + 3%;— (8q)) + ¢ M(q))aq,
1

T .
+c K +c A
c K,3q)) +c a (M(ql)qu + MD(ql.qu)qz)

Substitute (4.1) and (4.2) and use (2.7)
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. . 1
V(Aql.qu) - qur(-o(ql.qz)qz - k(g;) +u - M(qy)q,y + 5 “n("v’“‘z)“z

ur
+ -5A—ql- (8q,) + ¢ M(q))aqy + ¢ KAq,)

+c Aql'r(-c(ql.qz)q2 - k(qy) +u - M(ql)i“ + 1,(q).44,)4;)

- Tex - _an T
r(a),45,9,,) - 84, (K = cM(q;))aq, - 4q, D(q;.q;.9,4)

+ cdq, " ((9,,89,)9, - clay,8,)9)

T 3U* T
- CAql ““1 (Aql) = CAql' D(qlnq2|q24)

Apply ldentity 5, r - qurb = 0, Define Nys Ny 88 follows

n
n,o= sup L |IM ()]
17 gren 81 1

n, = sup |la, lIn,
27 qpp 192l

From ldentity 6,
T
lesq, (My(a;.m,09, - C(a),95)a; = D(q)48,:97) |
" )
cclloa [[any (1o, ] + 7= [laa,y 1|7
vhere 3=3 for (4.2a) , a=3 for (4.20) , e=} for (4.2¢) , a=j for (4.2d)

Hence,

V(aq,.8q,) < = (@ (KD = ) [|agy[[* - e v [|agy|?

“ain
"y 2
+ c |aq || any]laq, ] + 577118q,11%)

Completing square for the cross term,

. b3 2 2

V(Aqltqu) - alllAqu - “z“AQZH + 721“A41” ”qu”
where

1 2
ay c(v 7@ Ny0 )
an
1 2
°2 " fata®) "0 77
D
Y2177 M
2 2y
Given v, choose p~ < —= By Lemma 2-1, for
an, .
i I Yok -1
c < omin(xv) (w+3 02 +3n (51)2)

v
Q
(Vo. 51 are as defined from the proof of Theorem 3-1) and V xz € (0.al =Yy (CI) )

-

: 2
v H

1A

2
= ayllaq, 1% - 2,112,

<=V

for some A > O. Hence, the closed loop system is exponentially stable.

A common Lyapunov function used for tracking problem has been {9, 10]

V(Aql.qu) - % qur H(ql)qu + U'(Aql)
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In this case, a8 generalization of Invariance Principle to time-varying case is required. There are two
possibilities. The result in [Theorem A.7.6, 21} appears promising, but we must verify that (4.1) is positive pre-
compact (in the sence defined in [21]). A more direct route is to use [Lesma 1, 22] which states that if

447 and qu are both bounded uniformly in t (it follows from v < 0), then 4qy(t) + 0 implies qu(t) » 0,

Note that U'(Aq ) does not depend on time explicitly. This restriction eliminates some of the
candidates used in cc: point case. How to generalize to the case of U*(Aql,t) and U (Aq ,t) not
necessarily negative semidefinite is currently under investigation. 3t

Control laws (4.2a-d) all have same stability property nominally. When q2 is a very noise measurement,
as is typically the case, (4.2c) which only uses q; once may have bettar robustness.

Note that all the controllers have structures very similar to computer torque; in fact, if all occurrences
of q34 are replaced by q2, then the nonlinear compensation is exactly the same as the case of computer torque.
However, in their present forms, (4.2a-d) cannot take advantage of well known recursive algorithms for inverse
dynamics computation (11, 12]. Therefore, we next present slightly modified versions that can be implemented

with these algorithms.

Corollary 4-1
Consider (4.1) with the control law

- - - :
u Ky8q, + k(q,) a8, (8q)) + M(q))qy, + C(q;.9,4)9,, (4.6)
vhere U*(Aql) satisfies the same assumptions as in Theorem 4-1.

1f

N2
9 Ln(xv) > 7

then the null state of the (Aql.qu) system is a globally exponentially stable equilibriuam.

Corollary 4-2

Consider (4.1) with the control law
Jus .
u = - Kigy + kiq)) - 38q; (8q)) + M(q;)qy, + C(q;,9,)q, .7

where U*(4q)) satisfies the assumptions as in Theorem 4-1. Given a set of possible initial conditions, if
K, is sufficiently large, then the closed loop system is exponentially stable with respect to that set.

1f U'(Aql) -l AqlT K Aql, (4.7) is actually a modification of the computed torque method with Kp.
K, replacing H(ql)Kp. H(q1 Kv.

So far we have generated many control laws that are similar to computed torque. However, the ones
just requiring > 0, v > 0 are not easily implementable, and the easily implementable ones need sctronger
conditions (K, sufficiently large). The next control law that we shall present i{s of very appealing
structure: the real time undate computations are linear and the off-line computation can :take
advantage of efficient algorithms (e.g., Newton-Euler type). The trade-off is that K, and v must both
be large enough for a given set of initial conditionas.

Theorem 4-2

Consider (4.1) with the control law

ue= - KVAq1 + k(qld) - (aq)) + H(qld)qu + C(qld.qu)qu (4.8)

Ju*
BAQI
where U'(Aql) satisfles the assumptions as in Theorem 4.1. Given a set of pussible initial conditions, if Ky,
and v, are sufficiencly large, then the closed loop system is exponentially stable with respect to

that set.

® Tvpically, q4(0) = q24(0) = O and 8q;(0) is alvays within 2r. Hence V, is bounded above, and the result 1is
essentially a glo al one. This scheme requires both v and K, large enough. This requirement is made easier
by shifting the computational burden to offline thus alloving very high sampling rates which {n turn means
high gains can be tolerated.

4.2 Robustness

Lyapunov analysis provides a useful approach to study the robustness issue, Robustness is a much abused
word in the literature. Here, we use insensitive design to mean preservation of stability (in the sense of
Lagranpe) under sufficiently small perturbations. Furthermore, the size of the ultimate bound should vary
continuously with the size of perturbations. By robust design we mean a controller design that preserves
stability under prescribed size of perturbations. 1In this section, we will examine frictions, both viscous
and Coulomb type, bounded modeling error and bounded actuator and sensor noises.

225



Priction forces can be approximately modeled by Coulomb friction, or dry friction, and viscous friction
due to oil lubrication. Por joint i, the frictional force {s given by

() )
frrge =~ Fyqg 80 () = Fpp a0 - v FyFy >0 (4.9

Bquation (4.1) 1is then

H(ql)qu . - C(QloQI)Qz ~ k(ql) +$u - H(ql)q“ - Pl lgn(q.‘g - FZ“Z
where F; and F; are diagonal matrices with elements F)¢, P2y, respectively, sgn(qy) represents a vector
with elements sgn(qz4).

From [23], the set point controller is both insensitive and robust. The tracking controllers are also insensitive
with respect to frictions. For robust design for a given level of friction, a-‘n(xv) and v should be chosen large
enough.

Next we consider modeling error in controllcr implementation. Model parameters k, M, Mp can all be
written linearly in constant parameters. Assume bounded errors are incurred in these parameters.
Control laws (4.2) are in the form

u* .
ue- Kquz - qu (Aql) + k(ql) + H(ql)qzd D(quqzaﬂzd) + Al + Az
The additional terms in G are
T
- (CAq1 + qu) (A1 + Az)
which, aftar overbounding [23], becomes

(clleqpil + [leq,lly (5 L8+ 8 el IIAqII
After completing squares, the overbound over :he extra terms in G become
(% +6) cf. . 8,48
S 8ys, 2w ol flag 112+ 8+ =5+ L2y jiaq |
2 33 ] 28 2 28 2 2
1 3 p3
2 3 1 2 2
Haa H 11ea, 1%+ 6, [18q, 117 + 3 (8,48,) (c8,% + 8%
For 51. 55 suffictently small, 3 a1, a0 >0 such that
. 2 112 " 2 3
- - — ¢+ &
Voo alls 2o, Hoayii2 + et + 8 lldq 11 leq, 117 + 8, 1eq, 1% + 0

By Lemma 2-2, if V, > 0 and &;,8¢ are small, the system remains Lagrange stable and the ultimace bound
vanishes as 6 65 + 0. Hence, the design {s insensitive with respect to modeling errors. For robust
design for a gtven level of modeling uncertaincies, %min(K,) and Vv should be large enough.

Filnally, suppose bounded errars ¢;. €; and €y are incurred in qp, q7 and u, respectively, Control
laws (4%.2) are now (n the form

JUr .
us s K 8y - e (Ba) #k(ay) + MGaay - D(ayaagayg) + 8+ Y

Follow the same steps as before, we overbound the extra terms in V by sums of |aq ”2 ||Aq2H » g, |} Ihq ”
and constant terms. Again ugse Lemma 2-2 to conclude that the controller is insensitive to bounded nstrument
noises and robust for a given level of noise if Umln(Kv) and v are sufficiently large.

As an aside, it should be noted that similar results as derived here hold for computed torque
techniques also. For the case of set point contro. under friction, the insensitivity and robustness
properties of the design here do not follow directly from the analysis.

There are obviously many more practical implementation {ssues not addressed here: sampling effect,
actuator saturation, joint and arm flexibilities and instrument dynamics. They are currencly under
tnvestigaction In the same framework.

5. Summary

We have introduced a new class of exponentially stabilizing control laws for the joint level control of
robot manipulators (summar{zed in Table i). The stability result is achieved by making use of a particular
class of energy-like Lyapunov functions (of the form (4.4)) in conjunction with a useful lemma (Lemma 2-1) for
addressing higher order terms in Lyapunov function derivatives. This approach avoids the need for a generali-
zation of the invariance principle to time-varying systems, which has been the major source of difficulty in
the past [9,10].

In the set point control case, by incorporating art{ficial potential flelds {n the Lyapunov function, we have
derived a class of exponentially stabllizing, PD + potential shaping type of control laws. Several useful
potential fields have been examined resulting in simple structures: PP and PD+bias, and the ability to handle
joint stop constraints with PD + joint-stop-barrier controller. :
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In the tracking control case, the modified Lyapunov function leads to a new class of exponentially stable
control laws. This class of control laws offers an alternative to the convertional computed torque method and
provides trade-offs betwveen on-line computation (which directly relates to performance through maximua sampling
rate) and condition for stability. In one new design, (4.8), the nonlinear structure is decouplel from the
real-time measurements which completely removes the requirement for on-line nonlinear computation. The chart
below 1llustrates the trade-offs in the various tracking control laws.

(64.2a)
(4.2b)
(4.2¢)
On-line (4.2d)
Computation
Load computed
torque (4.6) 4.7)
(4.8)
v.K, 0 v>0 v>0 v,
for any Kv large enough Kv large enough large enough
initial (independent of for a given set for a given set
condition initial condition of initial of initial
conditions conditions

The framework of Lyapunov stability analysis also allows robustness issues to be directly addressed.
Specifically, insensitivity property (preservation of stability under small perturbation) and conditica for
robust design (preservation of stability under a specified amount of perturbation) fcr this new class of
controllers have been derived with respect to viscous and Coulomb friction, modeling error and bounded
instrument noise.

The new stability anslysis and controller design teghniques presented in this paper open up many :cromising
avenues for future research. In particular, our current research directions include: ways to i{ncorpo:ate time-
varying artificial potential fields in the tracking problem and the generalization of the exponenttally
stabil{zing joint-level control laws tc the task space.
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