775 research outputs found
A Stochastic Approach to Shortcut Bridging in Programmable Matter
In a self-organizing particle system, an abstraction of programmable matter,
simple computational elements called particles with limited memory and
communication self-organize to solve system-wide problems of movement,
coordination, and configuration. In this paper, we consider a stochastic,
distributed, local, asynchronous algorithm for "shortcut bridging", in which
particles self-assemble bridges over gaps that simultaneously balance
minimizing the length and cost of the bridge. Army ants of the genus Eciton
have been observed exhibiting a similar behavior in their foraging trails,
dynamically adjusting their bridges to satisfy an efficiency trade-off using
local interactions. Using techniques from Markov chain analysis, we rigorously
analyze our algorithm, show it achieves a near-optimal balance between the
competing factors of path length and bridge cost, and prove that it exhibits a
dependence on the angle of the gap being "shortcut" similar to that of the ant
bridges. We also present simulation results that qualitatively compare our
algorithm with the army ant bridging behavior. Our work gives a plausible
explanation of how convergence to globally optimal configurations can be
achieved via local interactions by simple organisms (e.g., ants) with some
limited computational power and access to random bits. The proposed algorithm
also demonstrates the robustness of the stochastic approach to algorithms for
programmable matter, as it is a surprisingly simple extension of our previous
stochastic algorithm for compression.Comment: Published in Proc. of DNA23: DNA Computing and Molecular Programming
- 23rd International Conference, 2017. An updated journal version will appear
in the DNA23 Special Issue of Natural Computin
"Freshwater killer whales": beaching behavior of an alien fish to hunt land birds
The behavioral strategies developed by predators to capture and kill their prey are fascinating, notably for predators that forage for prey at, or beyond, the boundaries of their ecosystem. We report here the occurrence of a beaching behavior used by an alien and large-bodied freshwater predatory fish (Silurus glanis) to capture birds on land (i.e. pigeons, Columbia livia). Among a total of 45 beaching behaviors observed and filmed, 28% were successful in bird capture. Stable isotope analyses (δ¹³C and δ¹⁵N) of predators and their putative prey revealed a highly variable dietary contribution of land birds among individuals. Since this extreme behavior has not been reported in the native range of the species, our results suggest that some individuals in introduced predator populations may adapt their behavior to forage on novel prey in new environments, leading to behavioral and trophic specialization to actively cross the water-land interface
Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment
The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2)×10−12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data
Developing a digital intervention for cancer survivors: an evidence-, theory- and person-based approach
This paper illustrates a rigorous approach to developing digital interventions using an evidence-, theory- and person-based approach. Intervention planning included a rapid scoping review which identified cancer survivors’ needs, including barriers and facilitators to intervention success. Review evidence (N=49 papers) informed the intervention’s Guiding Principles, theory-based behavioural analysis and logic model. The intervention was optimised based on feedback on a prototype intervention through interviews (N=96) with cancer survivors and focus groups with NHS staff and cancer charity workers (N=31). Interviews with cancer survivors highlighted barriers to engagement, such as concerns about physical activity worsening fatigue. Focus groups highlighted concerns about support appointment length and how to support distressed participants. Feedback informed intervention modifications, to maximise acceptability, feasibility and likelihood of behaviour change. Our systematic method for understanding user views enabled us to anticipate and address important barriers to engagement. This methodology may be useful to others developing digital interventions
Recommended from our members
Projected sensitivity of the LUX-ZEPLIN experiment to the 0νββ decay of Xe 136
The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double β decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to Xe136 neutrinoless double β decay, taking advantage of the significant (>600 kg) Xe136 mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of Xe136 is projected to be 1.06×1026 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with Xe136 at 1.06×1027 years
Measurement of the gamma ray background in the Davis cavern at the Sanford Underground Research Facility
Deep underground environments are ideal for low background searches due to the attenuation of cosmic rays by passage through the earth. However, they are affected by backgrounds from γ-rays emitted by 40K and the 238U and 232Th decay chains in the surrounding rock. The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a liquid xenon TPC located within the Davis campus at the Sanford Underground Research Facility, Lead, South Dakota, at the 4850-foot level. In order to characterise the cavern background, in-situ γ-ray measurements were taken with a sodium iodide detector in various locations and with lead shielding. The integral count rates (0–3300 keV) varied from 596 Hz to 1355 Hz for unshielded measurements, corresponding to a total flux from the cavern walls of 1.9 ± 0.4 γ cm−2s−1. The resulting activity in the walls of the cavern can be characterised as 220 ± 60 Bq/kg of 40K, 29 ± 15 Bq/kg of 238U, and 13 ± 3 Bq/kg of 232Th
Prevention of gastrointestinal cancer by surveillance endoscopy
The classification of the endoscopic appearance of superficial neoplastic lesions of the digestive mucosa aims to evaluate the risk of progression to advanced neoplasia in 3° (low, intermediate, high) and to predict appropriate treatment and corresponding surveillance. The privileged position of endoscopy results from its double impact on prevention of digestive cancer through reduction in incidence after early detection and eradication of precursors; and through reduction of mortality after detection and treatment of cancer at an early and curable stage. However the efficacy of diagnostic endoscopy still requires improvement and quality control on the following points: (1) technology, with a generalized use of the recently introduced high-resolution endoscopes. (2) diagnosis of poorly visible nonpolypoid precursors: this applies to small depressed lesions and large slightly elevated or sessile serrated and non-serrated precursors, particularly in the proximal colon. (3) treatment and training in therapeutic endoscopy, including the most recent techniques of mucosal resection of nonpolypoid lesions
Expression of a malarial Hsp70 improves defects in chaperone-dependent activities in ssa1 mutant yeast
Plasmodium falciparum causes the most virulent form of malaria and encodes a large number of molecular chaperones. Because the parasite encounters radically different environments during its lifecycle, many members of this chaperone ensemble may be essential for P. falciparum survival. Therefore, Plasmodium chaperones represent novel therapeutic targets, but to establish the mechanism of action of any developed therapeutics, it is critical to ascertain the functions of these chaperones. To this end, we report the development of a yeast expression system for PfHsp70-1, a P. falciparum cytoplasmic chaperone. We found that PfHsp70-1 repairs mutant growth phenotypes in yeast strains lacking the two primary cytosolic Hsp70s, SSA1 and SSA2, and in strains harboring a temperature sensitive SSA1 allele. PfHsp70-1 also supported chaperone-dependent processes such as protein translocation and ER associated degradation, and ameliorated the toxic effects of oxidative stress. By introducing engineered forms of PfHsp70-1 into the mutant strains, we discovered that rescue requires PfHsp70-1 ATPase activity. Together, we conclude that yeast can be co-opted to rapidly uncover specific cellular activities mediated by malarial chaperones. © 2011 Bell et al
- …
