200 research outputs found
Study of the pulse power supply unit for the four-horn system of the CERN to Frejus neutrino super beam
The power supply studies for the four-horn system for the CERN to Fr\'ejus
neutrino Super Beam oscillation experiment are discussed here. The power supply
is being studied to meet the physics potential and the mega-watt (MW) power
requirements of the proton driver of the Super Beam. A one-half sinusoid
current waveform with a 350 kA maximum current and pulse length of 100 \mu s at
50 Hz frequency is generated and distributed to four-horns. In order to provide
the necessary current needed to focus the charged mesons producing the neutrino
beam, a bench of capacitors is charged at 50 Hz frequency to a +12 kV reference
voltage and then discharged through a large switch to each horn via a set of
strip-lines at the same rate. A current recovery stage allows to invert rapidly
the negative voltage of the capacitor after the discharging stage in order to
recuperate large part of the injected energy and thus to limit the power
consuption. The energy recovery efficiency of that system is very high at 97%.
For feasibility reasons, a modular architecture has been adopted with 8 modules
connected in parallel to deliver 44 kA peak currents into the four-horn system.Comment: latex options change
The use the a high intensity neutrino beam from the ESS proton linac for measurement of neutrino CP violation and mass hierarchy
It is proposed to complement the ESS proton linac with equipment that would enable the production, concurrently with the production of the planned ESS beam used for neutron production, of a 5 MW beam of 10 2.5 GeV protons per year in microsecond short pulses to produce a neutrino Super Beam, and to install a megaton underground water Cherenkov detector in a mine to detect appearance in the produced beam. Results are presented of preliminary calculations of the sensitivity to neutrino CP violation and the mass hierarchy as a function of the neutrino baseline. The results indicate that, with 8 years of data taking with an antineutrino beam and 2 years with a neutrino beam and a baseline distance of around 400 km, CP violation could be discovered at 5 (3 ) confidence level in 48% (73%) of the total CP violation angular range. With the same baseline, the neutrino mass hierarchy could be determined at 3 level over most of the total CP violation angular range. There are several underground mines with a depth of more than 1000 m, which could be used for the creation of the underground site for the neutrino detector and which are situated within or near the optimal baseline range
The OPERA experiment Target Tracker
The main task of the Target Tracker detector of the long baseline neutrino
oscillation OPERA experiment is to locate in which of the target elementary
constituents, the lead/emulsion bricks, the neutrino interactions have occurred
and also to give calorimetric information about each event. The technology used
consists in walls of two planes of plastic scintillator strips, one per
transverse direction. Wavelength shifting fibres collect the light signal
emitted by the scintillator strips and guide it to both ends where it is read
by multi-anode photomultiplier tubes. All the elements used in the construction
of this detector and its main characteristics are described.Comment: 25 pages, submitted to Nuclear Instrument and Method
Observation of single collisionally cooled trapped ions in a buffer gas
Individual Ba ions are trapped in a gas-filled linear ion trap and observed
with a high signal-to-noise ratio by resonance fluorescence. Single-ion storage
times of ~5 min (~1 min) are achieved using He (Ar) as a buffer gas at
pressures in the range 8e-5 - 4e-3 torr. Trap dynamics in buffer gases are
experimentally studied in the simple case of single ions. In particular, the
cooling effects of light gases such as He and Ar and the destabilizing
properties of heavier gases such as Xe are studied. A simple model is offered
to explain the observed phenomenology.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. A. Minor
text and figure change
The EXO-200 detector, part I: Detector design and construction
EXO-200 is an experiment designed to search for double beta decay of
Xe with a single-phase, liquid xenon detector. It uses an active mass
of 110 kg of xenon enriched to 80.6% in the isotope 136 in an ultra-low
background time projection chamber capable of simultaneous detection of
ionization and scintillation. This paper describes the EXO-200 detector with
particular attention to the most innovative aspects of the design that revolve
around the reduction of backgrounds, the efficient use of the expensive
isotopically enriched xenon, and the optimization of the energy resolution in a
relatively large volume
A linear RFQ ion trap for the Enriched Xenon Observatory
The design, construction, and performance of a linear radio-frequency ion
trap (RFQ) intended for use in the Enriched Xenon Observatory (EXO) are
described. EXO aims to detect the neutrinoless double-beta decay of Xe
to Ba. To suppress possible backgrounds EXO will complement the
measurement of decay energy and, to some extent, topology of candidate events
in a Xe filled detector with the identification of the daughter nucleus
(Ba). The ion trap described here is capable of accepting, cooling, and
confining individual Ba ions extracted from the site of the candidate
double-beta decay event. A single trapped ion can then be identified, with a
large signal-to-noise ratio, via laser spectroscopy.Comment: 18 pages, pdflatex, submitted to NIM
First events from the CNGS neutrino beam detected in the OPERA experiment
The OPERA neutrino detector at the underground Gran Sasso Laboratory (LNGS)
was designed to perform the first detection of neutrino oscillations in
appearance mode, through the study of nu_mu to nu_tau oscillations. The
apparatus consists of a lead/emulsion-film target complemented by electronic
detectors. It is placed in the high-energy, long-baseline CERN to LNGS beam
(CNGS) 730 km away from the neutrino source. In August 2006 a first run with
CNGS neutrinos was successfully conducted. A first sample of neutrino events
was collected, statistically consistent with the integrated beam intensity.
After a brief description of the beam and of the various sub-detectors, we
report on the achievement of this milestone, presenting the first data and some
analysis results.Comment: Submitted to the New Journal of Physic
- …
