2 research outputs found

    Reactivity of acid gas pollutants with Ca(OH)2 at low temperature in the presence of water vapour

    Get PDF
    [eng] The reactivity of Ca-based sorbents with acid gases (specifically SO2, HCl and NO2) at low temperature has been a subject of interest in the last decades, since it constitutes the fundamental reactive system in a number of technologies aimed at the reduction of acid gas emission from industrial combustors or incinerator plants. However, a complete understanding of the chemistry involved still presents unsolved challenges. This thesis has been devoted to provide new insight on the kinetic modeling and reaction mechanism of the system Ca(OH)2-SO2 (+NO2) and direct evidence of the role of water on them. The mechanistic pathways of the Ca(OH)2-NO2 (+SO2) and Ca(OH)2-HCl systems are also discussed. The experimental breakthrough curves of SO2 obtained from a Ca(OH)2 bed reactor are successfully simulated by a semi-empirical kinetic model (DM-ISCM). This model takes into account (1) the deactivation of the reagent surface as the reaction product deposits on the surface and (2) an outward solid-state diffusion of hydrated Ca2+ and HO- ions from the inner Ca(OH)2/CaSO3路(1/2)H2O interface to the outer CaSO3(1/2)路H2O/gas one. The examination of Ca(OH)2 single crystals reacted with SO2 by atomic force microscopy (AFM) reveals that the reaction product crystallizes forming "needle-like" features irrespective of the RH at which reaction takes place. Furthermore, the AFM explorations provide evidence of product crystal (CaSO3路(1/2)H2O) mobility on the surface of the reactant crystal and further product crystal aggregation, as long as the crystal is in contact with water vapor. This finding suggests that once a product crystal is formed during the reaction, it is removed from its position, and consequently, new surface of Ca(OH)2 is opened up for further reaction. A reaction mechanism that might be consistent with the DM-ISCM and AFM results would consist of the following steps: (1) formation of an adsorbed water layer on the reagent surface; (2) hydration of SO2 with adsorbed water molecules to form SO2路zH2O complexes; (3) reaction of the complexes with Ca(OH)2 to form the reaction product CaSO3路(1/2)H2O by a solid-state mechanism; (4) diffusion of product crystallites and rearrangement of the reacted surface to form needle-like features; (5) ionic solid-state diffusion or reaction with residual active surface. Although in all the steps the adsorbed water could play a role, the most relevant one that might account for the outstanding effect of the RH on the reactivity of the system could be step (4). It could be proposed that product crystallites diffusion is promoted by the formation of H-bonds. On the other hand, the mechanistic pathway proposed for the system Ca(OH)2-NO2 is based on redefining the reactions that take place in aqueous solution, but considering their solid state character. It consists of two consecutive reactions: (1) NO2 reacts with Ca(OH)2 to give Ca(NO3)2 and Ca(NO2)2; (2) the product Ca(NO2)2 further reacts with adsorbed water to form NO and Ca(NO3)2. Furthermore, when SO2 is also present in the gas phase, a redox reaction between CaSO3 and NO2 could also occur. These reactions are consistent with the results from solid analyses and they seem to be promoted by adsorbed water. Moreover, the formation of Ca(NO3)2 and Ca(NO2)2 hygroscopic salts might account for the strong enhancement of the ability of Ca(OH)2 to capture SO2 under the presence of NO2. The SO2 experimental breakthrough curves obtained in these conditions are also reasonably well described by the DM-ISCM. Regarding the Ca(OH)2-HCl system, a possible mechanistic pathway consistent with our experimental results and the those seemingly diverse from literature concerns two consecutive reactions: (1) formation of Ca(OH)Cl, and (2) final formation of CaCl2 from the reaction between Ca(OH)Cl and HCl. A kinetic control of these reactions might be suggested, that is, depending on the experimental conditions, the second reaction does not take place. This second reaction is only expected to be promoted at high HCl concentrations and temperatures and/or at high reaction times.[spa] En les 煤ltimes d猫cades, la cont铆nua i creixent demanda de qualitat de vida, juntament amb un progressiu i sostingut increment de la poblaci贸 mundial, ha generat un fort creixement de l'activitat industrial i del transport. Aquesta situaci贸 ha originat una emissi贸 massiva de contaminants a l'atmosfera, alterant-ne la seva composici贸 i causant aix铆 efectes nocius en el medi ambient i en la salut humana. Tradicionalment, tant la legislaci贸 nord-americana com l'europea s'han centrat en la contaminaci贸 causada per la pluja 脿cida i per l'anomenat smog fotoqu铆mic. La pluja 脿cida pot originar-se a partir de l'emissi贸 directa de gasos 脿cids forts, com el HCl, per貌 la major part 茅s produ茂da indirectament per l'emissi贸 d'altres gasos com el SO2 i el NO2 El SO2 i el HCl atmosf猫rics s'originen b脿sicament a partir de la combusti贸 de materials s貌lids que contenen sofre o clor, respectivament. En aquest sentit, la principal font d'emissi贸 del SO2 s贸n les centrals t猫rmiques de combusti贸 de carb贸 -el petroli tamb茅 pot contenir sofre-, per貌 tamb茅 se'n pot generar a partir d'altres processos com el refinat del petroli i les plantes incineradores. Una de les alternatives m茅s utilitzades per a reduir les emissions de gasos 脿cids generats en fonts estacion脿ries s贸n les tecnologies de control post-combusti贸, que consisteixen en l'addici贸 de s貌lids alcalins en el corrent gas贸s per a neutralitzar els seus components gasosos 脿cids. Aquest proc茅s genera productes s貌lids amb un potencial contaminant molt menor que l'associada als seus precursors gasosos. En moltes d'aquestes tecnologies s'afegeix aigua de diferents formes en el proc茅s, ja que la reacci贸 de neutralitzaci贸 dels gasos 脿cids s'afavoreix en la seva pres猫ncia. Depenent de la quantitat d'aigua i forma que s'introdueixi en el proc茅s i del punt d'inserci贸 del s貌lid adsorbent en les centrals t猫rmiques, les tecnologies es poden classificar en m猫todes humits i m猫todes secs, que al mateix temps es poden que es poden dividir en tres grups: injecci贸 al forn, "Spray dry scrubbing" i injecci贸 d'adsorbent sec . En els darrers anys s'ha dut a terme una recerca intensiva a escala de laboratori i de planta pilot per a la determinaci贸 de l'efecte de les diferents variables de proc茅s en els processos "in-duct" -temperatura, humitat relativa, 脿rea superficial del s貌lid adsorbent i relaci贸 calci/sofre- sobre la capacitat dels s貌lids per a retenir SO2. En canvi, s'han publicat pocs estudis centrats en la cin猫tica i mecanismes de reacci贸 que intervenen en aquests processos. La manca d'estudis de les reaccions implicades 茅s m茅s acusada en aquelles parts dels processos on l'aigua interv茅 en forma vapor, com 茅s en els col路lectors de part铆cules de les centrals t猫rmiques -normalment filtres de m脿nigues- i en els conductes on les temperatures s贸n suficientment elevades per a qu猫 l'aigua es trobi en forma vapor
    corecore