441 research outputs found

    A Transport and Microwave Study of Superconducting and Magnetic RuSr2EuCu2O8

    Get PDF
    We have performed susceptibility, thermopower, dc resistance and microwave measurements on RuSr2EuCu2O8. This compound has recently been shown to display the coexistence of both superconducting and magnetic order. We find clear evidence of changes in the dc and microwave resistance near the magnetic ordering temperature (132 K). The intergranular effects were separated from the intragranular effects by performing microwave measurements on a sintered ceramic sample as well as on a powder sample dispersed in an epoxy resin. We show that the data can be interpreted in terms of the normal-state resistivity being dominated by the CuO2 layers with exchange coupling to the Ru moments in the RuO2 layers. Furthermore, most of the normal-state semiconductor-like upturn in the microwave resistance is found to arise from intergranular transport. The data in the superconducting state can be consistently interpreted in terms of intergranular weak-links and an intragranular spontaneous vortex phase due to the ferromagnetic component of the magnetization arising from the RuO2 planes.Comment: 20 pages including 6 figures in pdf format. To be published in Phys. Rev.

    Synthesis effects on the magnetic and superconducting properties of RuSr2GdCu2O8

    Full text link
    A systematic study on the synthesis of the Ru-1212 compound by preparing a series of samples that were annealed at increasing temperatures and then quenched has been performed. It results that the optimal temperature for the annealing lies around 1060-1065 C; a further temperature increase worsens the phase formation. Structural order is very important and the subsequent grinding and annealing improves it. Even if from the structural point of view the samples appear substantially similar, the physical characterization highlight great differences both in the electrical and magnetic properties related to intrinsic properties of the phase as well as to the connection between the grains as inferred from the resistive and the Curie Weiss behaviour at high temperature as well as in the visibility of ZFC anf FC magnetic signals.Comment: 17 pages, 12 figures. Proc. Int. Workshop " Ruthenate and rutheno-cuprate materials: theory and experiments", Vietri, October 2001. To be published on LNP Series, Springer Verlag, Berlin, C. Noce, A. Vecchione, M. Cuoco, A. Romano Eds, 200

    Evolutionary divergence of gene and protein expression in the brains of humans and chimpanzees

    Get PDF
    Although transcriptomic profiling has become the standard approach for exploring molecular differences in the primate brain, very little is known about how the expression levels of gene transcripts relate to downstream protein abundance. Moreover, it is unknown whether the relationship changes depending on the brain region or species under investigation. We performed high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses on two regions of the human and chimpanzee brain: The anterior cingulate cortex and caudate nucleus. In both brain regions, we found a lower correlation between mRNA and protein expression levels in humans and chimpanzees than has been reported for other tissues and cell types, suggesting that the brain may engage extensive tissue-specific regulation affecting protein abundance. In both species, only a few categories of biological function exhibited strong correlations between mRNA and protein expression levels. These categories included oxidative metabolism and protein synthesis and modification, indicating that the expression levels of mRNA transcripts supporting these biological functions are more predictive of protein expression compared with other functional categories. More generally, however, the two measures of molecular expression provided strikingly divergent perspectives into differential expression between human and chimpanzee brains: mRNA comparisons revealed significant differences in neuronal communication, ion transport, and regulatory processes, whereas protein comparisons indicated differences in perception and cognition, metabolic processes, and organization of the cytoskeleton. Our results highlight the importance of examining protein expression in evolutionary analyses and call for a more thorough understanding of tissue-specific protein expression levels

    On the effect of heterovalent substitutions in ruthenocuprates

    Full text link
    We discuss the properties of superconducting derivatives of the RuSr2GdCu2O8 (1212-type) ruthenocuprate, for which heterovalent doping has been achieved through partial substitution of Cu ions into the RuO2 planes (Ru1-xSr2GdCu2+xO8-d, 0<x<0.75, Tcmax=72 K for x=0.3-0.4) and Ce ions into the Gd sites (RuSr2Gd1-yCeyCu2O8, 0<y<0.1). The measurements of XANES, thermopower, and magnetization under external pressure reveal an underdoped character of all compounds. Muon spin rotation experiments indicate the presence of magnetic order at low temperatures (Tm=14-2 K for x=0.1-0.4). Properties of these two series lead us to the qualitative phase diagram for differently doped 1212-type ruthenocuprates. The difference in temperature of magnetic ordering found for superconducting and non-superconducting RuSr2GdCu2O8 is discussed in the context of the properties of substituted compounds. The high pressure oxygen conditions required for synthesis of Ru1-xSr2RECu2+xO8-d, have been extended to synthesis of a Ru1-xSr2Eu2-yCeyCu2+xO10-d series. The Cu->Ru doping achieved in these phases is found to decrease the temperature for magnetic ordering as well the volume fraction of the magnetic phase.Comment: Proceedings of the 3rd Polish-US Workshop on Magnetism and Superconductivity of Advanced Materials, July 14-19, 2002, Ladek Zdroj (Poland) to appear in Physica

    Study of the crystal structure, superconducting and magnetic properties of Ru1-xFexSr2GdCu2O8

    Full text link
    Samples of the Ru1-xFexSr2GdCu2O8 system with x = 0, 0.025, 0.05, 0.075, 0.1 and 0.2, were prepared and their structural, superconducting and magnetic properties were studied. Rietveld refinement of the X-ray diffraction patterns show that the Fe substitution occurs in both Ru and Cu sites. An increase of Fe concentration produces no significant changes in the bond angle Ru-O(3)-Ru, which is a measure of the rotation of the RuO6 octahedra around the c-axis, and also in the bond angle Ru-O(1)-Cu, which is a measure of the canting of the RuO6 octahedra. On the other hand, the bond angle Cu-O(2)-Cu, which is a measure of the buckling of the CuO2 layer, has a slight tendency to decrease with the increase of the Fe content. We found thet both ferromagnetic and superconducting transition temperatures are reduced with the increase of Fe concentration. Analisys related to the decay of the superconducting and ferromagnetic states is presented.Comment: 9 pages, 7 figure

    Magneto-Transport Properties of Doped RuSr2_2GdCu2_2O8_8

    Get PDF
    RuSr2_2GdCu2_2O8_8, in which magnetic order and superconductivity coexist with TMagneticT_{Magnetic}\ggTcT_c, is a complex material which poses new and important questions to our understanding of the interplay between magnetic and superconducting (SC) order. Resistivity, Hall effect and thermopower measurements on sintered ceramic RuSr2_2GdCu2_2O8_8 are presented, together with results on a broad range of substituted analogues. The Hall effect and thermopower both show anomalous decreases below TMagneticT_{Magnetic} which may be explained within a simple two-band model by a transition from localized to more itinerant behavior in the RuO2_2 layer at TMagneticT_{Magnetic}.Comment: 10 pages, 7 figures, submitted to Phys. Rev. B., correspondence to [email protected]

    Decoupled CuO_2 and RuO_2 layers in superconducting and magnetically ordered RuSr_2GdCu_2O_8

    Get PDF
    Comprehensive measurements of dc and ac susceptibility, dc resistance, magnetoresistance, Hall resistivity, and microwave absorption and dispersion in fields up to 8 T have been carried out on RuSr_2GdCu_2O_8 with the aim to establish the properties of RuO_2 and CuO_2 planes. At ~130 K, where the magnetic order develops in the RuO_2 planes, one observes a change in the slope of dc resistance, change in the sign of magnetoresistance, and the appearance of an extraordinary Hall effect. These features indicate that the RuO_2 planes are conducting. A detailed analysis of the ac susceptibility and microwave data on both, ceramic and powder samples show that the penetration depth remains frequency dependent and larger than the London penetration depth even at low temperatures. We conclude that the conductivity in the RuO_2 planes remains normal even when superconducting order is developed in the CuO_2 planes below \~45 K. Thus, experimental evidence is provided in support of theoretical models which base the coexistence of superconductivity and magnetic order on decoupled CuO_2 and RuO_2 planes.Comment: 11 pages, 11 figures, submitted to PR

    Proteolytic Processing of Nlrp1b Is Required for Inflammasome Activity

    Get PDF
    Nlrp1b is a NOD-like receptor that detects the catalytic activity of anthrax lethal toxin and subsequently co-oligomerizes into a pro-caspase-1 activation platform known as an inflammasome. Nlrp1b has two domains that promote oligomerization: a NACHT domain, which is a member of the AAA+ ATPase family, and a poorly characterized Function to Find Domain (FIIND). Here we demonstrate that proteolytic processing within the FIIND generates N-terminal and C-terminal cleavage products of Nlrp1b that remain associated in both the auto-inhibited state and in the activated state after cells have been treated with lethal toxin. Functional significance of cleavage was suggested by the finding that mutations that block processing of Nlrp1b also prevent the ability of Nlrp1b to activate pro-caspase-1. By using an uncleaved mutant of Nlrp1b, we established the importance of cleavage by inserting a heterologous TEV protease site into the FIIND and demonstrating that TEV protease processed this site and induced inflammasome activity. Proteolysis of Nlrp1b was shown to be required for the assembly of a functional inflammasome: a mutation within the FIIND that abolished cleavage had no effect on self-association of a FIIND-CARD fragment, but did reduce the recruitment of pro-caspase-1. Our work indicates that a post-translational modification enables Nlrp1b to function

    TLR2/MyD88/NF-κB Pathway, Reactive Oxygen Species, Potassium Efflux Activates NLRP3/ASC Inflammasome during Respiratory Syncytial Virus Infection

    Get PDF
    Human respiratory syncytial virus (RSV) constitute highly pathogenic virus that cause severe respiratory diseases in newborn, children, elderly and immuno-compromised individuals. Airway inflammation is a critical regulator of disease outcome in RSV infected hosts. Although “controlled” inflammation is required for virus clearance, aberrant and exaggerated inflammation during RSV infection results in development of inflammatory diseases like pneumonia and bronchiolitis. Interleukin-1β (IL-1β) plays an important role in inflammation by orchestrating the pro-inflammatory response. IL-1β is synthesized as an immature pro-IL-1β form. It is cleaved by activated caspase-1 to yield mature IL-1β that is secreted extracellularly. Activation of caspase-1 is mediated by a multi-protein complex known as the inflammasome. Although RSV infection results in IL-1β release, the mechanism is unknown. Here in, we have characterized the mechanism of IL-1β secretion following RSV infection. Our study revealed that NLRP3/ASC inflammasome activation is crucial for IL-1β production during RSV infection. Further studies illustrated that prior to inflammasome formation; the “first signal” constitutes activation of toll-like receptor-2 (TLR2)/MyD88/NF-κB pathway. TLR2/MyD88/NF-κB signaling is required for pro-IL-1β and NLRP3 gene expression during RSV infection. Following expression of these genes, two “second signals” are essential for triggering inflammasome activation. Intracellular reactive oxygen species (ROS) and potassium (K+) efflux due to stimulation of ATP-sensitive ion channel promote inflammasome activation following RSV infection. Thus, our studies have underscored the requirement of TLR2/MyD88/NF-κB pathway (first signal) and ROS/potassium efflux (second signal) for NLRP3/ASC inflammasome formation, leading to caspase-1 activation and subsequent IL-1β release during RSV infection
    corecore