1,072 research outputs found

    Structure of W3(OH) from Very High Spectral Resolution Observations of 5 Centimeter OH Masers

    Full text link
    Recent studies of methanol and ground-state OH masers at very high spectral resolution have shed new light on small-scale maser processes. The nearby source W3(OH), which contains numerous bright masers in several different transitions, provides an excellent laboratory for high spectral resolution techniques. We present a model of W3(OH) based on EVN observations of the rotationally-excited 6030 and 6035 MHz OH masers taken at 0.024 km/s spectral resolution. The 6.0 GHz masers are becoming brighter with time and show evidence for tangential proper motions. We confirm the existence of a region of magnetic field oriented toward the observer to the southeast and find another such region to the northeast in W3(OH), near the champagne flow. The 6.0 GHz masers trace the inner edge of a counterclockwise rotating torus feature. Masers at 6030 MHz are usually a factor of a few weaker than at 6035 MHz but trace the same material. Velocity gradients of nearby Zeeman components are much more closely correlated than in the ground state, likely due to the smaller spatial separation between Zeeman components. Hydroxyl maser peaks at very long baseline interferometric resolution appear to have structure on scales both smaller than that resolvable as well as on larger scales.Comment: 21 pages using emulateapj.cls including 16 figures and 2 tables, accepted to Ap

    HCOOCH3 as a probe of temperature and structure of Orion-KL

    Full text link
    We studied the O-bearing molecule HCOOCH3 to characterize the physical conditions of the different molecular source components in Orion-KL. We identify 28 methyl formate emission peaks throughout the 50" field of observations. The two strongest peaks are in the Compact Ridge (MF1) and in the SouthWest of the Hot Core (MF2). Spectral confusion is still prevailing as half of the expected transitions are blended over the region. Assuming that the transitions are thermalized, we derive the temperature at the five main emission peaks. At the MF1 position we find a temperature of 80K in a 1.8"x0.8" beam size and 120K on a larger scale (3.6" x2.2"), suggesting an external source of heating, whereas the temperature is about 130K at the MF2 position on both scales. Transitions of HCOOCH3 in vt=1 are detected as well and the good agreement of the positions on the rotational diagrams between the vt=0 and the vt=1 transitions suggests a similar temperature. The velocity of the gas is between 7.5 and 8.0km/s depending on the positions and column density peaks vary from 1.6x10^16 to 1.6x10^17cm^-2. A second velocity component is observed around 9-10 km/s in a North-South structure stretching from the Compact Ridge up to the BN object; this component is warmer at the MF1 peak. The two other C2H4O2 isomers are not detected and the derived upper limit for the column density is <3x10^14cm^-2 for glycolaldehyde and <2x10^15cm^-2 for acetic acid. From the 223GHz continuum map, we identify several dust clumps with associated gas masses in the range 0.8 to 5.8Msun. Assuming that the HCOOCH3 is spatially distributed as the dust, we find relative abundances of HCOOCH3 in the range <0.1x10^-8 to 5.2x10^-8. We suggest a relation between the methyl formate distribution and shocks as traced by 2.12 mum H2 emission.Comment: Accepted for publication in A&

    5cm OH masers as diagnostics of physical conditions in star-forming regions

    Full text link
    We demonstrate that the observed characteristics of the 5 cm OH masers in star-forming regions can be explained with the same model and the same parameters as the 18 cm and the 6 cm OH masers. In our already published study of the 18 cm and the 6 cm OH masers in star-forming regions we had examined the pumping of the 5 cm masers, but did not report the results we had found because of some missing collision rate coefficients, which in principle could be important. The recently published observations on the 5 cm masers of OH encourage us to report our old calculations along with some new ones that we have performed. These calculations, in agreement with the observations, reveal the main lines at 5 cm as strong masers, the 6049 MHz satellite line as a weak maser, and the 6017 MHz satellite line as never inverted for reasonable values of the parametersComment: TeX 15 pages, 30 postscript figures, accepted by Ap

    Ground-State SiO Maser Emission Toward Evolved Stars

    Full text link
    We have made the first unambiguous detection of vibrational ground-state maser emission from SiO toward six evolved stars. Using the Very Large Array, we simultaneously observed the v=0, J=1-0, 43.4-GHz, ground-state and the v=1, J=1-0, 43.1-GHz, first excited-state transitions of SiO toward the oxygen-rich evolved stars IRC+10011, o Ceti, W Hya, RX Boo, NML Cyg, and R Cas and the S-type star chi Cyg. We detected at least one v=0 SiO maser feature from six of the seven stars observed, with peak maser brightness temperatures ranging from 10,000 K to 108,800 K. In fact, four of the seven v=0 spectra show multiple maser peaks, a phenomenon which has not been previously observed. Ground-state thermal emission was detected for one of the stars, RX Boo, with a peak brightness temperature of 200 K. Comparing the v=0 and the v=1 transitions, we find that the ground-state masers are much weaker with spectral characteristics different from those of the first excited-state masers. For four of the seven stars the velocity dispersion is smaller for the v=0 emission than for the v=1 emission, for one star the dispersions are roughly equivalent, and for two stars (one of which is RX Boo) the velocity spread of the v=0 emission is larger. In most cases, the peak flux density in the v=0 emission spectrum does not coincide with the v=1 maser peak. Although the angular resolution of these VLA observations were insufficient to completely resolve the spatial structure of the SiO emission, the SiO spot maps produced from the interferometric image cubes suggest that the v=0 masers are more extended than their v=1 counterparts

    Full-Polarization Observations of OH Masers in Massive Star-Forming Regions: I. Data

    Full text link
    We present full-polarization VLBA maps of the ground-state, main-line, 2 Pi 3/2, J = 3/2 OH masers in 18 Galactic massive star-forming regions. This is the first large polarization survey of interstellar hydroxyl masers at VLBI resolution. A total of 184 Zeeman pairs are identified, and the corresponding magnetic field strengths are indicated. We also present spectra of the NH3 emission or absorption in these star-forming regions. Analysis of these data will be presented in a companion paper.Comment: 111 pages, including 42 figures and 21 tables, to appear in ApJ

    A Very High Spectral Resolution Study of Ground-State OH Masers in W3(OH)

    Get PDF
    We present VLBA observations of the ground-state hydroxyl masers in W3(OH) at 0.02 km s-1 spectral resolution. Over 250 masers are detected, including 56 Zeeman pairs. Lineshapes are predominantly Gaussian or combinations of several Gaussians, with normalized deviations typically of the same magnitude as in masers in other species. Typical FWHM maser linewidths are 0.15 to 0.38 km s-1 and are larger in the 1665 MHz transition than in the other three ground-state transitions. The satellite-line 1612 and 1720 MHz masers show no evidence of sigma^+/-2,3 components. The spatial positions of most masers are seen to vary across the line profile, with many spots showing clear, organized positional gradients. Equivalent line-of-sight velocity gradients in the plane of the sky typically range from 0.01 to 1 km s-1 AU-1 (i.e., positional gradients of 1 to 100 AU (km s-1)-1). Small velocity gradients in the 1667 MHz transition support theoretical predictions that 1667 MHz masers appear in regions with small velocity shifts along the amplification length. Deconvolved maser spot sizes appear to be larger in the line wings but do not support a spherical maser geometry

    OH far-infrared emission from low- and intermediate-mass protostars surveyed with Herschel-PACS

    Get PDF
    OH is a key species in the water chemistry of star-forming regions, because its presence is tightly related to the formation and destruction of water. This paper presents OH observations from 23 low- and intermediate-mass young stellar objects obtained with the PACS integral field spectrometer on-board Herschel in the context of the Water In Star-forming Regions with Herschel (WISH) key program. Most low-mass sources have compact OH emission (< 5000 AU scale), whereas the OH lines in most intermediate-mass sources are extended over the whole PACS detector field-of-view (> 20000 AU). The strength of the OH emission is correlated with various source properties such as the bolometric luminosity and the envelope mass, but also with the OI and H2O emission. Rotational diagrams for sources with many OH lines show that the level populations of OH can be approximated by a Boltzmann distribution with an excitation temperature at around 70 K. Radiative transfer models of spherically symmetric envelopes cannot reproduce the OH emission fluxes nor their broad line widths, strongly suggesting an outflow origin. Slab excitation models indicate that the observed excitation temperature can either be reached if the OH molecules are exposed to a strong far-infrared continuum radiation field or if the gas temperature and density are sufficiently high. Using realistic source parameters and radiation fields, it is shown for the case of Ser SMM1 that radiative pumping plays an important role in transitions arising from upper level energies higher than 300 K. The compact emission in the low-mass sources and the required presence of a strong radiation field and/or a high density to excite the OH molecules points towards an origin in shocks in the inner envelope close to the protostar.Comment: Accepted for publication in Astronomy and Astrophysics. Abstract abridge

    Rapid Processing of Net-Shape Thermoplastic Planar-Random Composite Preforms

    Get PDF
    A novel thermoplastic composite preforming and moulding process is investigated to target cost issues in textile composite processing associated with trim waste, and the limited mechanical properties of current bulk flow-moulding composites. The thermoplastic programmable powdered preforming process (TP-P4) uses commingled glass and polypropylene yarns, which are cut to length before air assisted deposition onto a vacuum screen, enabling local preform areal weight tailoring. The as-placed fibres are heat-set for improved handling before an optional preconsolidation stage. The preforms are then preheated and press formed to obtain the final part. The process stages are examined to optimize part quality and throughput versus processing parameters. A viable processing route is proposed with typical cycle times below 40s (for a plate 0.5 × 0.5m2, weighing 2kg), enabling high production capacity from one line. The mechanical performance is shown to surpass that of 40wt.% GMT and has properties equivalent to those of 40wt.% GMTex at both 20°C and 80°

    Formation of disclination lines near a free nematic interface

    Get PDF
    We have studied the nucleation and the physical properties of a -1/2 wedge disclination line near the free surface of a confined nematic liquid crystal. The position of the disclination line has been related to the material parameters (elastic constants, anchoring energy and favored anchoring angle of the molecules at the free surface). The use of a planar model for the structure of the director field (whose predictions have been contrasted to those of a fully three-dimensional model) has allowed us to relate the experimentally observed position of the disclination line to the relevant properties of the liquid crystals. In particular, we have been able to observe the collapse of the disclination line due to a temperature-induced anchoring angle transition, which has allowed us to rule out the presence of a real disclination line near the nematic/isotropic front in directional growth experiments. 61.30.Jf,61.30.G
    • 

    corecore