676 research outputs found

    Gator: a low-background counting facility at the Gran Sasso Underground Laboratory

    Full text link
    A low-background germanium spectrometer has been installed and is being operated in an ultra-low background shield (the Gator facility) at the Gran Sasso underground laboratory in Italy (LNGS). With an integrated rate of ~0.16 events/min in the energy range between 100-2700 keV, the background is comparable to those of the world's most sensitive germanium detectors. After a detailed description of the facility, its background sources as well as the calibration and efficiency measurements are introduced. Two independent analysis methods are described and compared using examples from selected sample measurements. The Gator facility is used to screen materials for XENON, GERDA, and in the context of next-generation astroparticle physics facilities such as DARWIN.Comment: 14 pages, 6 figures, published versio

    A scheme for the extraction of WIMP-nucleon scattering cross sections from total event rates

    Get PDF
    We propose a scheme that allows to analytically determine the three elementary cross sections and connect the solutions to the relative sign between the proton and the neutron spin scattering amplitudes once the measurements of total event rate from three appropriate targets become available. In this way it is thus possible to extract the maximum information on the supersymmetric parameter space obtainable from direct detection experiments, in the case that the dark matter particle is the lightest neutralino. Our scheme is based on suitably normalized form of the isospin momentum dependent structure functions entering in the spin-dependent elastic neutralino-nucleus cross section. We compare these functions with the commonly used ones and discuss their advantages: in particular, these allow in the spin-dependent cross section to factorize the particle physics degrees of freedom from the momentum transfer dependent nuclear structure functions as it happens in the spin-independent cross section with the nuclear form factor.Comment: 8 pages, 4 figures. Title, text and references revised and expanded. Added an Appendix explaining the advantages of the normalized spin structure functions. Accepted in PR

    Spatially uniform calibration of a liquid xenon detector at low energies using 83m-Kr

    Full text link
    A difficult task with many particle detectors focusing on interactions below ~100 keV is to perform a calibration in the appropriate energy range that adequately probes all regions of the detector. Because detector response can vary greatly in various locations within the device, a spatially uniform calibration is important. We present a new method for calibration of liquid xenon (LXe) detectors, using the short-lived 83m-Kr. This source has transitions at 9.4 and 32.1 keV, and as a noble gas like Xe, it disperses uniformly in all regions of the detector. Even for low source activities, the existence of the two transitions provides a method of identifying the decays that is free of background. We find that at decreasing energies, the LXe light yield increases, while the amount of electric field quenching is diminished. Additionally, we show that if any long-lived radioactive backgrounds are introduced by this method, they will present less than 67E-6 events/kg/day in the next generation of LXe dark matter direct detection searchesComment: 9 pages, 9 figures. Accepted to Review of Scientific Instrument

    Qualification Tests of the R11410-21 Photomultiplier Tubes for the XENON1T Detector

    Full text link
    The Hamamatsu R11410-21 photomultiplier tube is the photodetector of choice for the XENON1T dual-phase time projection chamber. The device has been optimized for a very low intrinsic radioactivity, a high quantum efficiency and a high sensitivity to single photon detection. A total of 248 tubes are currently operated in XENON1T, selected out of 321 tested units. In this article the procedures implemented to evaluate the large number of tubes prior to their installation in XENON1T are described. The parameter distributions for all tested tubes are shown, with an emphasis on those selected for XENON1T, of which the impact on the detector performance is discussed. All photomultipliers have been tested in a nitrogen atmosphere at cryogenic temperatures, with a subset of the tubes being tested in gaseous and liquid xenon, simulating their operating conditions in the dark matter detector. The performance and evaluation of the tubes in the different environments is reported and the criteria for rejection of PMTs are outlined and quantified.Comment: 24 pages, 16 figure

    Background Measurements in the Gran Sasso Underground Laboratory

    Full text link
    The gamma background flux below 3000 keV in the Laboratori Nazionali del Gran Sasso (LNGS), Italy, has been measured using a 3" diameter NaI(Tl) detector at different underground positions: In hall A, hall B, the interferometer tunnel, and inside the Large Volume Detector (LVD). The integrated flux is 0.3--0.4 s1^{-1}cm2^{-2} at the first three locations, and is lower by two orders of magnitude inside LVD. With the help of Monte Carlo simulations for every location, the contribution of the individual primordial isotopes to the background has been determined. Using an 11" diameter NaI(Tl) detector, the background neutron flux in the LNGS interferometer tunnel has been estimated. Within the uncertainties, the result agrees with those from other neutron measurements in the main halls.Comment: 6 pages, 6 figures, accepted versio

    First Results from the Heidelberg Dark Matter Search Experiment

    Get PDF
    The Heidelberg Dark Matter Search Experiment (HDMS) is a new ionization Germanium experiment in a special design. Two concentric Ge crystals are housed by one cryostat system, the outer detector acting as an effective shield against multiple scattered photons for the inner crystal, which is the actual dark matter target. We present first results after successfully running the prototype detector for a period of about 15 months in the Gran Sasso Underground Laboratory. We analyze the results in terms of limits on WIMP-nucleon cross sections and present the status of the full scale experiment, which will be installed in Gran Sasso in the course of this year.Comment: 11 pages, latex, 4 tables, 10 figures; submitted to Phys. Rev.

    Crosstalk between G-protein and Ca2+ pathways switches intracellular cAMP levels

    Get PDF
    Cyclic adenosine monophosphate and cyclic guanosine monophosphate are universal intracellular messengers whose concentrations are regulated by molecular networks comprised of different isoforms of the synthases adenylate cyclase or guanylate cyclase and the phosphodiesterases which degrade these compounds. In this paper, we employ a systems biology approach to develop mathematical models of these networks that, for the first time, take into account the different biochemical properties of the isoforms involved. To investigate the mechanisms underlying the joint regulation of cAMP and cGMP, we apply our models to analyse the regulation of cilia beat frequency in Paramecium by Ca(2+). Based on our analysis of these models, we propose that the diversity of isoform combinations that occurs in living cells provides an explanation for the huge variety of intracellular processes that are dependent on these networks. The inclusion of both G-protein receptor and Ca(2+)-dependent regulation of AC in our models allows us to propose a new explanation for the switching properties of G-protein subunits involved in nucleotide regulation. Analysis of the models suggests that, depending on whether the G-protein subunit is bound to AC, Ca(2+) can either activate or inhibit AC in a concentration-dependent manner. The resulting analysis provides an explanation for previous experimental results that showed that alterations in Ca(2+) concentrations can either increase or decrease cilia beat frequency over particular Ca(2+) concentration ranges

    Search for inelastic dark matter with the CDMS II experiment

    Full text link
    Results are presented from a reanalysis of the entire five-tower data set acquired with the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory, with an exposure of 969 kg-days. The analysis window was extended to a recoil energy of 150 keV, and an improved surface-event background-rejection cut was defined to increase the sensitivity of the experiment to the inelastic dark matter (iDM) model. Three dark matter candidates were found between 25 keV and 150 keV. The probability to observe three or more background events in this energy range is 11%. Because of the occurrence of these events, the constraints on the iDM parameter space are slightly less stringent than those from our previous analysis, which used an energy window of 10–100 keV. © 2011 American Physical Societ

    First Results of the EDELWEISS WIMP Search using a 320 g Heat-and-Ionization Ge Detector

    Full text link
    The EDELWEISS collaboration has performed a direct search for WIMP dark matter using a 320 g heat-and-ionization cryogenic Ge detector operated in a low-background environment in the Laboratoire Souterrain de Modane. No nuclear recoils are observed in the fiducial volume in the 30-200 keV energy range during an effective exposure of 4.53 kg.days. Limits for the cross-section for the spin-independent interaction of WIMPs and nucleons are set in the framework of the Minimal Supersymmetric Standard Model (MSSM). The central value of the signal reported by the experiment DAMA is excluded at 90% CL.Comment: 14 pages, Latex, 4 figures. Submitted to Phys. Lett.

    Cosmogenic Production as a Background in Searching for Rare Physics Processes

    Full text link
    We revisit calculations of the cosmogenic production rates for several long-lived isotopes that are potential sources of background in searching for rare physics processes such as the detection of dark matter and neutrinoless double-beta decay. Using updated cosmic-ray neutron flux measurements, we use TALYS 1.0 to investigate the cosmogenic activation of stable isotopes of several detector targets and find that the cosmogenic isotopes produced inside the target materials and cryostat can result in large backgrounds for dark matter searches and neutrinoless double-beta decay. We use previously published low-background HPGe data to constrain the production of 3H^{3}H on the surface and the upper limit is consistent with our calculation. We note that cosmogenic production of several isotopes in various targets can generate potential backgrounds for dark matter detection and neutrinoless double-beta decay with a massive detector, thus great care should be taken to limit and/or deal with the cosmogenic activation of the targets.Comment: 11 pages, 4 figures, and 4 table
    corecore