1,175 research outputs found

    Le Budget et le Deficit.

    Get PDF
    n/

    Residual stress measurements of alumina-zirconia ceramics by time-of-flight neutron diffraction

    Full text link
    Neutron strain scanning and Rietveld analysis were used to study the residual stresses in Al2O3/Y-TZP ceramic composites fabricated by different green processing techniques (a novel tape casting and conventional slip casting) and with different zirconia content. The results show that the residual stresses in zirconia particulates are tensile and the ones in alumina matrix are compressive, with almost flat through-thickness residual stress profiles in all bulk samples. The residual stresses for both phases were mainly dependent on the zirconia content, irrespective of the measurement direction and the fabrication process

    Oscillating red giants in the CoRoT exo-field: Asteroseismic mass and radius determination

    Get PDF
    Context. Observations and analysis of solar-type oscillations in red-giant stars is an emerging aspect of asteroseismic analysis with a number of open questions yet to be explored. Although stochastic oscillations have previously been detected in red giants from both radial velocity and photometric measurements, those data were either too short or had sampling that was not complete enough to perform a detailed data analysis of the variability. The quality and quantity of photometric data as provided by the CoRoT satellite is necessary to provide a breakthrough in observing p-mode oscillations in red giants. We have analyzed continuous photometric time-series of about 11 400 relatively faint stars obtained in the exofield of CoRoT during the first 150 days long-run campaign from May to October 2007. We find several hundred stars showing a clear power excess in a frequency and amplitude range expected for red-giant pulsators. In this paper we present first results on a sub-sample of these stars. Aims. Knowing reliable fundamental parameters like mass and radius is essential for detailed asteroseismic studies of red-giant stars. As the CoRoT exofield targets are relatively faint (11-16 mag) there are no (or only weak) constraints on the star's location in the H-R diagram. We therefore aim to extract information about such fundamental parameters solely from the available time series. Methods. We model the convective background noise and the power excess hump due to pulsation with a global model fit and deduce reliable estimates for the stellar mass and radius from scaling relations for the frequency of maximum oscillation power and the characteristic frequency separation.Comment: 10 pages, 7 figures, accepted for publication in A&

    The universal red-giant oscillation pattern; an automated determination with CoRoT data

    Full text link
    The CoRoT and Kepler satellites have provided thousands of red-giant oscillation spectra. The analysis of these spectra requires efficient methods for identifying all eigenmode parameters. The assumption of new scaling laws allows us to construct a theoretical oscillation pattern. We then obtain a highly precise determination of the large separation by correlating the observed patterns with this reference. We demonstrate that this pattern is universal and are able to unambiguously assign the eigenmode radial orders and angular degrees. This solves one of the current outstanding problems of asteroseismology hence allowing precise theoretical investigation of red-giant interiors.Comment: Accepted in A&A letter

    Non-radial oscillations in the red giant HR7349 measured by CoRoT

    Full text link
    Convection in red giant stars excites resonant acoustic waves whose frequencies depend on the sound speed inside the star, which in turn depends on the properties of the stellar interior. Therefore, asteroseismology is the most robust available method for probing the internal structure of red giant stars. Solar-like oscillations in the red giant HR7349 are investigated. Our study is based on a time series of 380760 photometric measurements spread over 5 months obtained with the CoRoT satellite. Mode parameters were estimated using maximum likelihood estimation of the power spectrum. The power spectrum of the high-precision time series clearly exhibits several identifiable peaks between 19 and 40 uHz showing regularity with a mean large and small spacing of Dnu = 3.47+-0.12 uHz and dnu_02 = 0.65+-0.10 uHz. Nineteen individual modes are identified with amplitudes in the range from 35 to 115 ppm. The mode damping time is estimated to be 14.7+4.7-2.9 days.Comment: 8 pages, A&A accepte
    corecore