4 research outputs found

    Wind tunnel testing of the DeepWind demonstrator in design and tilted operating conditions

    Get PDF
    The DeepWind Project aims at investigating the feasibility of a new floating vertical-axis wind turbine (VAWT) concept, whose purpose is to exploit wind resources at deep-water offshore sites.The results of an extensive experimental campaign on the DeepWind reduced scale demonstrator are here presented for different wind speeds and rotor angular velocities, including also skewed flow operation due to a tilted rotor arrangement. To accomplish this, after being instrumented to measure aerodynamic power and thrust (both in streamwise and transversal directions), a troposkien three-bladed rotor was installed on a high precision test bench, whose axis was suitable to be inclined up to 15° with respect to the design (i.e. upright) operating condition.The experiments were performed at the large scale, high speed wind tunnel of the Politecnico di Milano (Italy), using a "free jet" (open channel) configuration. The velocity field in the wake of the rotor was also fully characterized by means of an instrumented traversing system, to investigate the flow distribution downstream of the test section.Special care is taken in the description of the experimental set-up and of the measured data, so that the present results can be used as a benchmark for the validation of simulation models

    Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects

    No full text
    Climatic changes are predicted to significantly affect the frequency and severity of disturbances that shape forest ecosystems. We provide a synthesis of climate change effects on native bark beetles, important mortality agents of conifers in western North America. Because of differences in temperature-dependent life-history strategies, including cold-induced mortality and developmental timing, responses to warming will differ among and within bark beetle species. The success of bark beetle populations will also be influenced indirectly by the effects of climate on community associates and host-tree vigor, although little information is available to quantify these relationships. We used available population models and climate forecasts to explore the responses of two eruptive bark beetle species. Based on projected warming, increases in thermal regimes conducive to population success are predicted for Dendroctonus rufipennis (Kirby) and Dendroctonus ponderosae Hopkins, although there is considerable spatial and temporal variability. These predictions from population models suggest a movement of temperature suitability to higher latitudes and elevations and identify regions with a high potential for bark beetle outbreaks and associated tree mortality in the coming century
    corecore