256 research outputs found
Interplay between PFBC-associated SLC20A2 and XPR1 phosphate transporters requires inositol polyphosphates for control of cellular phosphate homeostasis
Solute carrier family 20 member 2 (SLC20A2) and xenotropic and polytropic retrovirus receptor 1 (XPR1) are transporters with phosphate uptake and efflux functions, respectively. Both are associated with primary familial brain calcification (PFBC), a genetic disease characterized by cerebral calcium-phosphate deposition and associated with neuropsychiatric symptoms. The association of the two transporters in the same disease suggests that they jointly regulate phosphate fluxes and cellular homeostasis, but direct evidence is missing. Here, we found that cross-talk between SLC20A2 and XPR1 regulates phosphate homeostasis and identify XPR1 as a key inositol polyphosphate (IP)-dependent regulator of this process. We found that overexpression of wildtype SLC20A2 increases phosphate uptake as expected, but also unexpectedly increases phosphate efflux, whereas PFBC-associated SLC20A2 variants did not. Conversely, SLC20A2 depletion decreased phosphate uptake only slightly, most likely compensated for by the related SLC20A1 transporter, but strongly decreased XPR1-mediated phosphate efflux. The SLC20A2-XPR1 axis maintained constant intracellular phosphate and ATP levels, which both increased in XPR1-KO cells. Elevated ATP is a hallmark of altered inositol pyrophosphate (PP-IP) synthesis, and basal ATP levels were restored after phosphate efflux rescue with wildtype XPR1, but not with XPR1 harboring a mutated PP-IP-binding pocket. Accordingly, inositol hexakisphosphate kinase 1-2 (IP6K1-2) gene inactivation or IP6K inhibitor treatment abolished XPR1-mediated phosphate efflux regulation and homeostasis. Our findings unveil an SLC20A2-XPR1 interplay that depends on IPs such as PP-IPs and controls cellular phosphate homeostasis via the efflux route, and that alteration of this interplay likely contributes to PFBC
Zukunftskonzept Harz : eine Untersuchung zur zukünftigen Anpassung des Wintertourismus an den Klimawandel
Der Harz ist ein deutsches Mittelgebirge dessen Haupterwerbsquelle der Tourismus ist. Diese Arbeit befasst sich mit dem Umgang der durch den Klimawandel verursachten Gefährdung des Wintertourismus. Die steigenden Temperaturen und Niederschlagsveränderungen führen zu immer häufigeren schneefreien Tagen während der Wintersaison und stellen eine große Gefahr für die Erhaltung des Wintertourismus im Harz dar. Anpassungsmaßnahmen- und Strategien wie der Einsatz von Schneekanonen werden stark diskutiert. Viele sehen den Gebrauch von künstlichem Schnee als einzige Möglichkeit auch in Zukunft eine gute Wintersaison und somit auch eine wichtige Einnahmequelle erhalten zu können. Kunstschneegegner hingegen sehen dieser Entwicklung mit großer Besorgnis entgegen. Hohe Kosten, ein maßloser Wasserverbrauch und der rücksichtslose Eingriff in die Natur werden hingenommen und das Ergebnis wird auf den Schulter der nächsten Generationen ausgetragen. Ein Blick auf die tatsächlichen Möglichkeiten des Harzes Kunstschnee zu benutzen und auch die Aussicht auf die demografische Entwicklung bezüglich der zukünftigen Zielgruppen zeigen, dass künstlicher Schnee die Zukunft des Harzer Wintertourismus nicht sichern kann
Cyclocreatine treatment ameliorates the cognitive, autistic and epileptic phenotype in a mouse model of Creatine Transporter Deficiency
Creatine Transporter Deficiency (CTD) is an inborn error of metabolism presenting with intellectual disability, behavioral disturbances and epilepsy. There is currently no cure for this disorder. Here, we employed novel biomarkers for monitoring brain function, together with well-established behavioral readouts for CTD mice, to longitudinally study the therapeutic efficacy of cyclocreatine (cCr) at the preclinical level. Our results show that cCr treatment is able to partially correct hemodynamic responses and EEG abnormalities, improve cognitive deficits, revert autistic-like behaviors and protect against seizures. This study provides encouraging data to support the potential therapeutic benefit of cyclocreatine or other chemically modified lipophilic analogs of Cr
High-resolution magic angle spinning 1H nuclear magnetic resonance spectroscopy metabolomics of hyperfunctioning parathyroid glands
Background Primary hyperparathyroidism (PHPT) may be related to a single gland disease or multiglandular disease, which requires specific treatments. At present, an operation is the only curative treatment for PHPT. Currently, there are no biomarkers available to identify these 2 entities (single vs. multiple gland disease). The aims of the present study were to compare (1) the tissue metabolomics profiles between PHPT and renal hyperparathyroidism (secondary and tertiary) and (2) single gland disease with multiglandular disease in PHPT using metabolomics analysis. Methods The method used was 1H high-resolution magic angle spinning nuclear magnetic resonance spectroscopy. Forty-three samples from 32 patients suffering from hyperparathyroidism were included in this study. Results Significant differences in the metabolomics profile were assessed according to PHPT and renal hyperparathyroidism. A bicomponent orthogonal partial least square-discriminant analysis showed a clear distinction between PHPT and renal hyperparathyroidism (R2Y = 0.85, Q2 = 0.63). Interestingly, the model also distinguished single gland disease from multiglandular disease (R2Y = 0.96, Q2 = 0.55). A network analysis was also performed using the Algorithm to Determine Expected Metabolite Level Alterations Using Mutual Information (ADEMA). Single gland disease was accurately predicted by ADEMA and was associated with higher levels of phosphorylcholine, choline, glycerophosphocholine, fumarate, succinate, lactate, glucose, glutamine, and ascorbate compared with multiglandular disease. Conclusion This study shows for the first time that 1H high-resolution magic angle spinning nuclear magnetic resonance spectroscopy is a reliable and fast technique to distinguish single gland disease from multiglandular disease in patients with PHPT. The potential use of this method as an intraoperative tool requires specific further studies. © 2016 Elsevier Inc
Categorizing natural history trajectories of ambulatory function measured by the 6-minute walk distance in patients with Duchenne muscular dystrophy
High variability in patients' changes in 6 minute walk distance (6MWD) over time has complicated clinical trials of treatment efficacy in Duchenne muscular dystrophy (DMD). We assessed whether boys with DMD could be grouped into classes that shared similar ambulatory function trajectories as measured by 6MWD. Ambulatory boys aged 5 years or older with genetically confirmed DMD who were enrolled in a natural history study at 11 care centers throughout Italy were included. For each boy, standardized assessments of 6MWD were available at annual intervals spanning 3 years. Trajectories of 6MWD vs. age and trajectories of 6MWD vs. time from enrollment were examined using latent class analysis. A total of 96 boys were included. At enrollment, the mean age was 8.3 years (mean 6MWD: 374 meters). After accounting for age, baseline 6MWD, and steroid use, four latent trajectory classes were identified as explaining 3-year 6MWD outcomes significantly better than a single average trajectory. Patient trajectories of 6MWD change from enrollment were categorized as having fast decline (n\ue2\u80\u89=\ue2\u80\u8925), moderate decline (n\ue2\u80\u89=\ue2\u80\u8919), stable function (n\ue2\u80\u89=\ue2\u80\u8937), and improving function (n\ue2\u80\u89=\ue2\u80\u8915) during the 3-year follow-up. After accounting for trajectory classes, the standard deviation of variation in 6MWD was reduced by approximately 40%. The natural history of ambulatory function in DMD may be composed of distinct trajectory classes. The extent to which trajectories are associated with novel and established prognostic factors warrants further study. Reducing unexplained variation in patient outcomes could help to further improve DMD clinical trial design and analysis
SUFU haploinsufficiency causes a recognisable neurodevelopmental phenotype at the mild end of the Joubert syndrome spectrum.
Joubert syndrome (JS) is a recessively inherited ciliopathy characterised by congenital ocular motor apraxia (COMA), developmental delay (DD), intellectual disability, ataxia, multiorgan involvement, and a unique cerebellar and brainstem malformation. Over 40 JS-associated genes are known with a diagnostic yield of 60%-75%.In 2018, we reported homozygous hypomorphic missense variants of the SUFU gene in two families with mild JS. Recently, heterozygous truncating SUFU variants were identified in families with dominantly inherited COMA, occasionally associated with mild DD and subtle cerebellar anomalies.
We reanalysed next generation sequencing (NGS) data in two cohorts comprising 1097 probands referred for genetic testing of JS genes.
Heterozygous truncating and splice-site SUFU variants were detected in 22 patients from 17 families (1.5%) with strong male prevalence (86%), and in 8 asymptomatic parents. Patients presented with COMA, hypotonia, ataxia and mild DD, and only a third manifested intellectual disability of variable severity. Brain MRI showed consistent findings characterised by vermis hypoplasia, superior cerebellar dysplasia and subtle-to-mild abnormalities of the superior cerebellar peduncles. The same pattern was observed in two out of three tested asymptomatic parents.
Heterozygous truncating or splice-site SUFU variants cause a novel neurodevelopmental syndrome encompassing COMA and mild JS, which likely represent overlapping entities. Variants can arise de novo or be inherited from a healthy parent, representing the first cause of JS with dominant inheritance and reduced penetrance. Awareness of this condition will increase the diagnostic yield of JS genetic testing, and allow appropriate counselling about prognosis, medical monitoring and recurrence risk
Welfare assessment protocol App: innovative solutions for on-farm data collection and analyses
THE CHALLENGE:
Standardization of data collection within EU countries
Reduce assessment time
Store and analyse welfare data
THE SOLUTION:
Digital smartphone/tablet applications for data collection and reporting
WP1 AWIN scientists developed apps for turkeys, horses and goat
Genetic and phenotypic spectrum associated with IFIH1 gain-of-function
IFIH1 gain‐of‐function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi–Goutières syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate
- …